Abstract:
An LED package and a fabrication method thereof are provided. The LED package includes an upper metal plate having an LED-receiving hole therein; a lower metal plate disposed under the upper metal plate; and an insulator which the upper metal plate and the lower metal plate from each other. A portion of the lower metal plate is exposed via the LED-receiving hole and an LED is mounted on the exposed portion of the lower metal plate and is electrically connected to both of the upper and lower metal plates. A protective cover encloses and protects exposed surfaces of the upper and lower metal plates.
Abstract:
A fluidic lens and method for manufacturing the same are provided. The fluidic lens includes a transparent optical fluid and a double elastomer membrane. An outer membrane of the double elastomer membrane that is externally exposed includes a Poly DiMethyl Siloxane (PDMS) elastomer, and an inner membrane of the double elastmoer membrane that makes contact with the optical fluid is transparent and includes an elastomer which has a low coherence with respect to the optical fluid.
Abstract:
Varifocal lens for camera module incorporated in wireless mobile communication device is provided. The varifocal lens includes: a membrane; a frame which is fixed to the membrane and has a receiving hole formed in the middle; a transparent substrate which is fixed to the frame to seal optical fluid received in the receiving hole; one or more actuators to change a curvature of a fluid lens part by bending the circumference of the fluid lens part formed around a central portion of the receiving hole; and a restriction lessening member which is adapted to lessen a restrictive force of an edge of the fluid lens part, is made of a transparent material, has with an area smaller than the fluid lens part to correspond to an inner side of the fluid lens part except the edge of the fluid lens part, and has a larger Young's modulus than the membrane.
Abstract:
A method of fabricating a backlight module in which at least one luminescence element is positioned, including: positioning a luminescence element in at least one cavity formed on a carrier; forming a lower electrode on a substrate; transferring the luminescence element positioned on the carrier to the substrate, connecting the luminescence element to a pattern of the lower electrode formed on the substrate, and removing the carrier; forming an insulating layer on a surface of the substrate to which the luminescence element is transferred, and exposing a top region of the luminescence element; and forming an upper electrode on the exposed top region of the luminescence element. Accordingly, the backlight module including very small luminescence elements being of a micro unit in size is easily fabricated.
Abstract:
Provided is a varifocal lens and method of manufacturing the varifocal lens. The varifocal lens includes a transparent substrate, a spacer frame arranged to form an inner space on the transparent substrate, wherein the inner space is to be filled with an optical fluid, a rigid frame disposed to be adjacent to the spacer frame, and an optical membrane and an actuator which are formed on a surface of the rigid frame. The rigid frame supports the actuator and the optical membrane, wherein the actuator applies a pressure to an optical fluid and the optical membrane is modified according to a flow of the optical fluid.
Abstract:
A varifocal lens includes a hollow case having first and second sidewalls facing each other, the first and second sidewalls through which a light passes; at least one light transmission membrane partitioning an inner space of the case into at least two liquid chambers, the at least one light transmission membrane through which a light passes; at least two liquids filled in the at least two liquid chambers; at least one first operating hole formed at the first sidewall; a first actuator disposed to cover the at least one first operating hole and to pressurize the liquid contacting the first sidewall; and a controller configured to control the first actuator to change a focal distance of an optical lens consisting of the first and second sidewalls, the at least two liquids, and the at least one light transmission membrane of the case.
Abstract:
A touch panel is provided. The touch panel includes an electroactive polymer (EAP) actuator which is deformable when protruded or depressed locally at a part to which a driving voltage is applied; and a flexible touch sensor which is disposed on the EAP actuator. The flexible touch sensor is deformable locally in correspondence with a deformation of the EAP actuator, and senses an input according to a contact or pressing operation.
Abstract:
A varifocal lens structure, a method of manufacturing the varifocal lens structure, an optical lens module, and a method of manufacturing the optical lens module. The varifocal lens structure includes a liquid lens unit including a silicone membrane that includes a first silicone elastomer, a polymer actuator disposed on an upper surface of the silicone membrane, and an adhesive silicone layer that is disposed between the silicone membrane and the polymer actuator and includes a second silicone elastomer.
Abstract:
A variable-focus liquid lens is provided. The liquid lens includes a membrane and a fluid. The membrane is made of a transparent elastomer, and the fluid fills a predetermined space to contact at least a lens surface of the membrane. The membrane and the fluid are respectively made of materials repulsive to each other, for example, hydrophilic and hydrophobic materials or oleophilic and oleophobic materials. Accordingly, a repulsive force between the fluid and the membrane can prevent the absorption or leaking of the fluid into/through the membrane.
Abstract:
Provided are a polymer and a polymer actuator including the polymer. The polymer is cross-linked by a cross-linking agent. When the polymer is used in the polymer actuator, the polymer actuator shows a high strain and may be stably operated at high temperatures.