Abstract:
A method of oxidizing an organic alcohol, wherein the organic alcohol is contacted with a stoichiometric excess of oxygen in the presence of an effective catalytic amount of a maganese-containing octahedral molecular sieve or octahedral layer. Primary alcohols are selectively oxidized to aldehydes, and secondary alcohols are selectively oxidized to ketones.
Abstract:
Synthetic manganese oxide octahedral molecular sieves, e.g., OMS-1 and OMS-2, are employed as acid-base catalysts in a variety of acid-base organic conversion reactions.
Abstract:
A metal nitride powder can be made by heating a reactant powder that includes an oxide or hydroxide of Al, Ti, or Zr to a reaction temperature in a nonreactive atmosphere. The heated reactant powder is contacted with a gaseous reactant mixture comprising a nitrogen source and a carbon source. The molar ratio of nitrogen to carbon in the gaseous reactant mixture is at least about 15. The reactant powder is maintained at the reaction temperature for a sufficient time to convert a portion of it to metal nitride powder.
Abstract:
Disclosed is a method for cracking a hydrocarbon material. The method includes introducing a stream including a hydrocarbon fluid into a reaction zone. A microwave discharge plasma is continuously maintained within the reaction zone, and in the presence of the hydrocarbon fluid. Reaction products of the microwave discharge are collected downstream of the reaction zone.
Abstract:
Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
Abstract:
A process is disclosed for preparing ortho substituted phenylamines comprising contacting phenylhydroxylamine, optionally substituted with at least one inert substituent, with a nucleophilic reagent in the presence of a manganese oxide at a temperature between about 10° C. and about 170° C. and a pressure from subatmospheric to superatmospheric such that an ortho substituted phenylamine, optionally correspondingly substituted with at least one inert substituent, is predominantly formed.
Abstract:
Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.
Abstract:
A process of synthesizing synthetic manganese oxide hydrates having various structures including hollandite and todorokite structure by hydrothermal synthesis. The products have a high degree of crystallinity, and thermal stability.
Abstract:
The present teachings are directed toward an electrocatalytic cell including a barrier, having at least a first side and a second side opposite the first side, comprising a material permeable to oxygen ions and impermeable to at least CO2, CO, H2, H2O and hydrocarbons, an electrical power supply in communication with the barrier, a catalyst adjacent the first side of the barrier, a supply of feedstock components in communication with the first side of the barrier, a supply of a carrier gas component in communication with the second side of the barrier; wherein the feedstock components contact the catalyst and react to form hydrocarbon-containing components and oxygen-containing components, and the electrical power supply biases the barrier to thereby conduct oxygen ions from the first side to the second side. Also presented are a device and methods for producing carbon nanotubes.
Abstract:
Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation. Highly selective syntheses of high value jet fuel, C2-C6 alkenes, C2-C6 carboxylic acids; α-hydroxylic acids and their derivatives have been realized by tuning the oxidation ability of OMS-2 supports and by doping with Cu2+ ions.