Abstract:
A process for cracking hydrocarbons at atmospheric pressure includes the following steps: providing a catalyst, passing a gaseous hydrocarbon over the catalyst and exposing the catalyst to microwave energy. The hydrocarbons are broken down into lower Carbon number molecules.
Abstract:
A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.
Abstract:
A fiber is coated with boron carbide by contacting the fiber with a reaction mixture of a boron source and a carbon source at a temperature of at least about 1050.degree. C. such that the boron source and carbon source react with each other to produce a boron carbide coating on the fiber. The fiber comprises aluminum oxide, SiC, or Si.sub.3 N.sub.4 and the boron carbide coating comprises up to about 40 atomic percent boron.
Abstract translation:通过使纤维与硼源和碳源的反应混合物在至少约1050℃的温度下接触使纤维涂覆有碳化硼,使得硼源和碳源彼此反应以产生硼 纤维上的碳化物涂层。 纤维包括氧化铝,SiC或Si 3 N 4,并且碳化硼涂层包含至多约40原子百分比的硼。
Abstract:
Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation. Highly selective syntheses of high value jet fuel, C2-C6 alkenes, C2-C6 carboxylic acids; α-hydroxylic acids and their derivatives have been realized by tuning the oxidation ability of OMS-2 supports and by doping with Cu2+ ions.
Abstract:
The present teachings are directed toward an electrocatalytic cell including a barrier, having at least a first side and a second side opposite the first side, comprising a material permeable to oxygen ions and impermeable to at least CO2, CO, H2, H2O and hydrocarbons, an electrical power supply in communication with the barrier, a catalyst adjacent the first side of the barrier, a supply of feedstock components in communication with the first side of the barrier, a supply of a carrier gas component in communication with the second side of the barrier; wherein the feedstock components contact the catalyst and react to form hydrocarbon-containing components and oxygen-containing components, and the electrical power supply biases the barrier to thereby conduct oxygen ions from the first side to the second side. Also presented are a device and methods for producing carbon nanotubes.
Abstract:
A process for removing sulfur and sulfur compounds from a catalyst includes the following steps: exposing the catalyst to a reducing atmosphere and exposing the catalyst to microwave energy. Desorption of the sulfur and sulfur compounds from the catalyst occurs at a temperature less than 600 degrees centigrade.
Abstract:
A metal nitride powder can be made by heating a reactant powder that includes an oxide or hydroxide of Al, Ti, or Zr to a reaction temperature in a nonreactive atmosphere. The heated reactant powder is contacted with a gaseous reactant mixture comprising a nitrogen source and a carbon source. The molar ratio of nitrogen to carbon in the gaseous reactant mixture is at least about 15. The reactant powder is maintained at the reaction temperature for a sufficient time to convert a portion of it to metal nitride powder.
Abstract:
Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
Abstract:
A process for decomposing nitrogen oxides includes the following steps: providing a catalyst, passing a gaseous nitrogen oxide over the catalyst and exposing the catalyst to microwave energy. The gaseous nitrogen oxide is broken down into nitrogen and oxygen molecules.
Abstract:
A process for the synthesis of 2,2,6,6-tetramethyl-4-oxopiperidine is disclosed wherein the process comprises reacting in a liquid phase reaction mixture: A) at least one acetone compound, and B) at least one ammonia donor compound, in the presence of a catalytically effective amount of a crystalline aluminosilicate containing calcium.