Abstract:
A treatment for prostate cancer using cyclin-dependent kinase inhibitors is provided. The effects of cyclin-dependent kinase inhibitors on the survival of prostate cancer cells was examined. Roscovitine, R-roscovitine, and CGP74514A were shown to induce the apoptosis of LNCaP and LNCaP-Rf cells, both of which express wild-type p53. The cyclin-dependent kinase inhibitors of the present invention induce the mitochondria-mediated apoptosis of prostate cancer cells by a dual mechanism: p53 accumulation and XIAP depletion.
Abstract:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
Abstract:
A novel SH-SAW biosensor capable of non-invasive and touch-free detection of cancer cell viability and growth or proliferation in two-dimensional (2D) and three-dimensional (3D) cell cultures as well as stem cell regeneration as it pertains to cancer cell biology and anti-cancer drug development is presented. The biosensor includes two pairs of resonators including interdigital transducers reflecting fingers to quantify mass loading by the cells in suspension as well as within a tumoroid culture platform. The biosensor can be part of a perfused 3PNS-tumoroid system that is amenable to real-time non-invasive monitoring of the cell proliferation, viability, and multiplexed detection of key physiologic and clinical biomarkers.
Abstract:
Provided are methods of treating an inflammatory disease in a subject in need thereof by administering an amount of microRNA 142, an amount of microRNA 223 or an amount of microRNA 142 and an amount of micro RNA 223 to the subject in need thereof.
Abstract:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
Abstract:
Provided herein is a hydrogel composition comprising a graphene, a chitosan, and a polyethylene (glycol) diacrylate (PEGDA) (PCG hydrogel). In some embodiments, the hydrogel further comprises a N-isopropylacrylamide (NIPAM) (TPCG hydrogel). Also provided is a method for differentiating a mesenchymal stem cell comprising contacting the cell with the PCG hydrogel. Further provided herein is a method for delivering a pharmaceutical composition to a cell comprising administering to the cell a TPCG hydrogel and the pharmaceutical composition.
Abstract:
A treatment for cancer using a combination therapy including an inhibitor of the PI3K/Akt pathway in combination with roscovitine. It is shown that the combination of roscovitine and API-2 (Triciribine) or roscovitine and LY294002 induce the apoptosis of androgen-dependent (LNCaP) and androgen-independent (PC3) prostate cancer cells. Two important results have been observed. First, cells that respond to roscovitine alone (LNCaP) initiate apoptosis sooner when co-treated. Second, cells that do not respond to roscovitine alone (PC3) apoptose when co-treated, although with delayed kinetics. In the absence of roscovitine, AKT inhibitors had no effect on LNCaP or PC3 survival, and in both cell lines, the combined treatment activated the mitochondrial pathway of apoptosis. Importantly, normal epithelial cells (RPWE) remained viable in the presence of roscovitine and AKT inhibitors. Events elicited by roscovitine (down-regulation of XIAP) and AKT inhibitors (accumulation of Bim) in LNCaP and PC3 cells are identified. Additional data show that PC3 cells apoptose when treated with AKT inhibitors and depleted of either XIAP or Cdk9. Taken together, these important results lead to improved treatments for cancers, such as prostate cancer, through the combination therapies taught herein.
Abstract:
The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs. The present disclosure encompasses embodiments of nanoparticle-based compositions and methods for the use thereof for the delivery of genes, oligonucleotides, including but not limited to small interfering RNA, and other small molecule drugs, into the brain by nasal insufflation.
Abstract:
The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs. The present disclosure encompasses embodiments of nanoparticle-based compositions and methods for the use thereof for the delivery of genes, oligonucleotides, including but not limited to small interfering RNA, and other small molecule drugs, into the brain by nasal insufflation.
Abstract:
Methods, compositions and devices are provided by the present invention for reducing activity of a natriuretic peptide receptor and other signals. Therapeutic treatments are provided by use of polynucleotides encoding a natriuretic peptide or by regulating the expression of natriuretic peptide receptor, such as NPRA and NPRC, or combinations of these therapies. Routes used for delivering polynucleotides encoding a natriuretic peptide, or, for example, siRNA that down regulates natriuretic peptide receptor include subcutaneous injection, oral gavage, transdermal and intranasal delivery routes. Compositions can include chitosan, chitosan derivatives, and chitosan derivative and a lipid. Transdermal delivery can use a transdermal cream. Intranasal delivery can use a dropper or an aspirator for delivery of a mist. Oral gavage delivers equivalent to oral delivery. Delivery permits cell and tissue specific targeting of gene therapies resulting in expression of a natriuretic peptide or down regulation of natriuretic peptide receptor. A variety of cancers, asthma and viral diseases can be treated therapeutically using the methods and compositions of the present invention.