摘要:
The present invention is a wire saw in which a wire for slicing is wound around a plurality of rollers to form a wire row; the wire for slicing is driven axially in a reciprocating direction; a workpiece is sliced simultaneously at a plurality of points arranged in an axial direction by feeding the workpiece against the wire row with the workpiece cut into while a slurry is supplied to the wire for slicing; the wire saw controlling in such a manner that the workpiece is extracted while the wire is caused to travel at a speed of 2 m/min or less at the time of extracting the workpiece from the wire row after slicing the workpiece. As a result, there is provided a wire saw in which the workpiece sliced with the wire row of the wire saw can be extracted from the wire row with a simple structure without a negative influence on its slicing surface.
摘要:
A method of processing a semiconductor wafer sliced from a monocrystalline ingot comprises at least the steps of chamfering, lapping, etching, mirror-polishing, and cleaning. In the etching step, alkali etching is first performed and then acid etching, preferably reaction-controlled acid etching, is performed. The etching amount of the alkali etching is greater than the etching amount of the acid etching. Alternatively, in the etching step, reaction-controlled acid etching is first performed and then diffusion-controlled acid etching is performed. The etching amount of the reaction-controlled acid etching is greater than the etching amount of the diffusion-controlled acid etching. The method can remove a mechanically formed damage layer, improve surface roughness, and efficiently decrease the depth of locally formed deep pits, while the flatness of the wafer attained through lapping is maintained, in order to produce a chemically etched wafer having a smooth and flat etched surface that hardly causes generation particles and contamination.
摘要:
A method and an apparatus for high-flatness etching a semiconductor single crystal wafer wherein said wafer is so rotated in a flow of an ethchant radially spreading in a plane that the main surface of said wafer may move parallelly with the flow of said etchant.
摘要:
A double-disc grinding apparatus having at least: a rotatable ring-shaped holder for supporting a sheet-like wafer having a notch for indicating a crystal orientation from an outer circumference side along a radial direction, the holder having a protruding portion to be engaged with the crystal-orientation-indicating notch; and a pair of grindstones for simultaneously grinding both surfaces of the wafer supported by the holder, in which the holder is provided with at least one protruding portion separately from the protruding portion to be engaged with the crystal-orientation-indicating notch, and the both surfaces of the wafer are simultaneously ground by the pair of the grindstones while the wafer is supported and rotated with the at least one protruding portion being engaged with a wafer-supporting notch formed on the wafer.
摘要:
The present invention is a wafer production method at least comprising a chamfering step of chamfering a wafer sliced from an ingot using a grindstone for chamfering, and a step of obtaining a product wafer thinner than the chamfered wafer by performing at least one or more than one of the following processes on the chamfered wafer: flattening, etching, and polishing, the method at least comprising a correction step of chamfering a dummy wafer equivalent in thickness to the product wafer, measuring the chamfered dummy wafer for its chamfered shape, and correcting the shape of the grindstone for chamfering based on the measured chamfered shape of the dummy wafer, at least before the chamfering step, thereby chamfering the wafer sliced from the ingot using the grindstone for chamfering having its shape corrected. Thus, it is possible to provide a wafer production method allowing a product wafer with a desired chamfered shape to be obtained in a short period of time.
摘要:
The present invention is a method for producing a semiconductor wafer, comprising: at least a double-side polishing step; and a chamfered-portion polishing step; wherein as a first chamfered-portion polishing step, at least, a chamfered portion of the wafer is polished so that a chamfered surface of each of main surface sides in the chamfered portion is in contact with a polishing pad; then the double-side polishing is performed; as a second chamfered-portion polishing step, at least, the chamfered portion of the wafer is polished so that an end surface of the chamfered portion is in contact with a polishing pad and so that both main surfaces of the wafer are not in contact with a polishing pad. Thereby, when a semiconductor wafer is produced, scratch and such generated in the chamfered portion in a double-side polishing process can be removed and, excessive polishing in a peripheral portion of a main surface can be prevented from being caused in polishing a chamfered portion. Therefore, a method for producing a semiconductor wafer having a high flatness even in the vicinity of a chamfered portion, and the semiconductor wafer are provided.
摘要:
A double side grinding apparatus comprises a pair of grinding wheels (4), work rotating device (1) and moving device (2). The apparatus operates to bring the grinding faces (4a) into contact with the respective work surfaces (a) to advance each grinding face to the position of a predetermined depth of cut by moving at least one of the grinding wheels (4) while rotating the grinding wheels (4) and rotating the work (W) by the device (1) about an axis thereof as supported in a predetermined grinding position so that an outer periphery of the work (W) intersects outer peripheries of the grinding wheels (4) with a center (c) of the work (W) positioned inwardly of the grinding faces (4a), stop each of the grinding wheels (4) from advancing in the direction of depth of cut, move each of the grinding wheels (4) and the work (W) by the moving device (2) relative to each other in a direction parallel to the work surface (a) until the center (c) of the work (W) is positioned externally of the grinding faces (4a), and separate the grinding faces (4a) from the work surfaces (a). The surfaces of the work can be ground at the same time easily with diminished variations in the thickness of the work although the apparatus is small-sized.
摘要:
A decorative film for use in plastics molding, said decorative film being a laminate film prepared by outwardly and successively laminating a polyolefin film layer, a primer layer, optionally a topcoating layer and a releasable layer, said primer layer being a coating film formed from an isocyanate-curing type resin composition containing (A) a hydroxyl group-containing resin having a hydroxyl number of 30 to 200 KOH mg/g on an average and a weight average molecular weight of 1000 to 80000, (B) a polyolefin based resin and (C) a (blocked)polyisocyanate compound in such mixing amounts that a number of the isocyanate group in the component (C) is in the range of 0.1 to 0.9 per one hydroxyl group in the component (A) and that the component (B) is in the range of 1 to 90% by weight based on a total weight of the components (A), (B) and (C), and having a static glass transition temperature of 20 to 70° C., an elongation of 10% or more and a tensile strength of 0.5 kgf/mm2 or more; a process for preparing the decorative film and an injection-molded part by use of the decorative film.
摘要:
A method for producing a semiconductor wafer that yields a wafer having high flatness and back surface characteristics to address problems concerning the back surface of a wafer produced by the conventional surface grinding/double side polishing method and observed during the production process. The method comprises flattening both sides of the wafer by surface grinding means, eliminating a mechanically damaged layer by an etching treatment, and then subjecting a front surface of the wafer to a single side polishing treatment, wherein a back surface of the wafer has glossiness in a range of 20-80%.
摘要:
A method of manufacturing semiconductor wafers includes a double side primary polishing step, a back side etching step and a single side mirror polishing step. This method is capable of easy sensor detection of the front and back sides of the wafer, wafer processing of higher flatness level by forming etched rough surface at the back side of the double side polished wafer and setting up of wafer manufacturing process including a double side polishing step.