Abstract:
The present invention is directed to a system for acoustically controlling an automotive or aircraft vehicle's automatic climate control system. The acoustic HVAC control system determines an average air temperature using an ultrasonic transducer. The transducer transmits and receives an ultrasonic pulse along a pre-selected path within the vehicle's interior and concurrently measures the interval time between sending and receiving the pulse. An average air temperature is calculated based on the interval time. The determined average air temperature is evaluated against a pre-selected setpoint temperature and determines whether the vehicle's automatic climate control system controller controls an air blower fan speed, discharge temperature, and air delivery mode to the cabin to adjust the vehicle's interior air temperature near an occupant to a desired temperature. The average air velocity along the pre-selected path can also be determined from the difference in interval times for ultrasonic pulses traveling in opposite directions along the pre-selected path.
Abstract:
A heat pipe is described. The heat pipe includes a heat pipe body containing a working fluid; and a louvered cooling fin adjacent to one end of the heat pipe body, the louvered cooling fin extending outward from a surface of the heat pipe body. Air-cooled battery packs containing the heat pipe are also described.
Abstract:
A method and control module for indicating engine oil life includes a viscosity determination module determining a viscosity of the engine oil based on an engine oil pressure and engine oil temperature. The control system further includes a comparison module comparing the viscosity of the engine oil to a threshold and generating a warning signal in response to comparing the viscosity.
Abstract:
A method for developing a mesh network for analyzing air flow around a surface of a vehicle body includes the steps of determining a plurality of estimates for a flow direction for the air flow for a plurality of locations around the surface and generating the mesh network based at least in part on the plurality of estimates. The mesh network comprises a plurality of mesh lines. Each mesh line is at least substantially aligned with the flow direction proximate a corresponding one of the plurality of locations.
Abstract:
A modified high efficiency kinetic spray nozzle is disclosed. The modified nozzle has a rapid expansion rate in the diverging region relative to prior art nozzles, which enables one to achieve much higher particle velocities without an increase in the main gas temperature. Preferably, the expansion rate of the supersonic nozzle in a portion of the diverging region is at least 1 mm2 per millimeter, more preferably 2 mm2 per millimeter, more preferably 5 mm2 per mm, with a most preferable expansion rate being 10 mm2 per millimeter.
Abstract:
An ethanol sensing unit and a method of using, wherein the unit is particularly suitable for use in a confined environment such as the passenger compartment of a passenger vehicle. The sensing unit comprises a device for collecting ethanol vapors while the device is at a first temperature, a device for heating the collecting device to a second temperature higher than the first temperature so as to release ethanol vapors from the collecting device, and a device for sensing the ethanol vapors released from the collecting device when heated by the heating device. The sensing unit is also adapted to delay the operation of the heating device until a period of time sufficient for the collecting device to adsorb ethanol vapors from air contained in the confined environment.
Abstract:
A method for detecting fuel leaking into an oil pan containing oil which is used to lubricate an internal combustion engine utilizes a plurality of sensors. The method includes the step of measuring a plurality of parameters of the oil using each of the plurality of sensors to create measured values. A fuel leakage value is calculated incorporating each of the measured values. The method then determines when the fuel leakage value exceeds a predetermined value.
Abstract:
An oil change sensing system for an internal combustion engine, having an oil pressure sensor adapted to provide an oil pressure signal to an engine control module; an oil temperature sensor adapted to provide an oil temperature signal to the engine control module; wherein the engine control module comprises an algorithm which determines the oil's viscosity by using the measured oil temperature and oil pressure and the determined oil viscosity and a fresh oil viscosity are used to determine whether the oil is in a preferred operating range.
Abstract:
A system and method for reducing a buffeting condition in a passenger compartment of a vehicle is disclosed herein. The system includes, but is not limited to, a blocking member disposed between the passenger compartment and an adjacent space that is configured to move between an open position and a closed position to respectively open and close an opening between the passenger compartment and the adjacent space. The system further includes a motor operatively coupled with the blocking member and configured to move the blocking member between the open position and the closed position. The system still further includes a controller operatively coupled to the motor and configured to control the motor to move the blocking member to alternate between the open position and the closed position at a predetermined rate in response to a triggering event, whereby a buffeting condition experienced in the passenger compartment is diminished.
Abstract:
A smart HVAC system adapted for selectively regulating fluid flow into a space generally includes an HVAC system including at least one active vent, a preferably variable blower fluidly coupled thereto, and at least one sensor associated with each vent, wherein the sensor is operable to cause the associated vent to shift between opened and closed conditions, and/or preferably the blower output to change, when an occupant is autonomously detected within at least a portion of the space.