Abstract:
A memory device includes sections arranged between a global bit line and a complementary global bit line, and having a section control unit disposed between first and second memory cell groups and connected between the global bit line and the complementary global bit line to provide a first read signal and a second read signal. A signal converter receives the first and second read signals and generates a stable controlled read signal indicative of a data value stored in the memory cell. A latch unit receives and latches the controlled read signal provided by the signal converter to generate a latched read signal.
Abstract:
Provided is an amplifier circuit having a constant output swing range and a stable delay time, where the amplifier circuit includes a first bias unit, a second bias unit, a comparison unit, and an amplifier unit, and the first bias unit responds to an internal reference signal with a predetermined voltage level and maintains constant the amount of a first current, and the second bias unit receives an external reference signal, responds to a control voltage, and controls the amount of a second current to be the same as the amount of the first current, and the comparison unit compares a voltage level of a first node with a voltage level of a second node, and controls a voltage level of the control voltage according to the comparison result, and the amplifier unit compares a voltage level of an external input signal with a voltage level of the external reference signal, amplifies and outputs a voltage difference between the two compared signals, responds to the control voltage, and controls the amount of a third current to be the same as the amount of the first current although the level of the external reference signal is varied, such that the amplifier circuit and a circuit for receiving data can maintain a constant output swing range and a stable delay time irrespective of variations in the voltage levels of the external input signal or the external reference signal.
Abstract:
A method and circuit for sampling and writing data in a double data rate (DDR) memory device, capable of securing sufficient setup and hold margins regardless of the operation frequency. Transferring first and second sampled input data to a first path using a first path control signal. Transferring third and fourth sampled input data to a second path using a second path control signal. The first and second path control signals are one half-cycle out of phase. First to fourth data are successively sampled in synchronization with a rising or falling edge of a first external clock signal; The sampled first data is linked onto a first path and the sampled second data is linked onto a second path in response to the first path control signal (generated in synchronization with a falling edge of the external clock signal); the first data on the first path and the second data on the second path are written to the memory cells in response to a write clock signal.
Abstract:
A synchronous mirror delay circuit comprises a delay monitor circuit for delaying a reference clock signal from a clock buffer circuit. A forward delay array sequentially delays an output clock signal of the delay monitor circuit to generate delay clock signals, and the mirror control circuit detects a delay clock signal synchronized with the reference clock signal among the delay clock signals. A backward delay array delays a clock signal delayed by the mirror control circuit, and a clock driver receives an output clock signal of the backward delay array to generate the internal clock signal. A locking range control circuit controls a delay time of each clock signal transferred to the delay monitor circuit by the amount of a delay time of each signal transferred to the clock driver when none of delay clock signals of the forward delay array is synchronized with the reference clock signal.
Abstract:
An integrated circuit device includes a clock delay circuit configured to receive a clock signal and a pulse signal and to produce an output signal therefrom. The clock delay circuit is configured to transition the output signal to a first state responsive to a first state of the clock signal and to transition the output signal to a second state responsive to a first state transition of the pulse signal. The integrated circuit device further includes a pulse generator circuit configured to receive the clock signal and the output signal and to produce the pulse signal therefrom. The pulse generator circuit is configured to generate the first state transition in the pulse signal responsive to a transition of the clock signal to a second state and to generate a second state transition in the pulse signal responsive to the transition of the output signal to the second state.
Abstract:
A test device for a system-on-chip includes a sequential logic circuit and a test circuit. The sequential logic circuit generates a test input signal by converting a serial input signal into a parallel format in response to a serial clock signal and a serial enable signal and generates a serial output signal by converting a test output signal into a serial format in response to the serial clock signal and the serial enable signal. The test circuit includes at least one delay unit that is separated from a logic circuit performing original functions of the system-on-chip, performs a delay test on the at least one delay unit using the test input signal in response to a system clock signal and a test enable signal, and provides the test output signal to the sequential logic circuit, where the test output signal representing a result of the delay test.
Abstract:
Provided is an amplifier circuit having a constant output swing range and a stable delay time, where the amplifier circuit includes a first bias unit, a second bias unit, a comparison unit, and an amplifier unit, and the first bias unit responds to an internal reference signal with a predetermined voltage level and maintains constant the amount of a first current, and the second bias unit receives an external reference signal, responds to a control voltage, and controls the amount of a second current to be the same as the amount of the first current, and the comparison unit compares a voltage level of a first node with a voltage level of a second node, and controls a voltage level of the control voltage according to the comparison result, and the amplifier unit compares a voltage level of an external input signal with a voltage level of the external reference signal, amplifies and outputs a voltage difference between the two compared signals, responds to the control voltage, and controls the amount of a third current to be the same as the amount of the first current although the level of the external reference signal is varied, such that the amplifier circuit and a circuit for receiving data can maintain a constant output swing range and a stable delay time irrespective of variations in the voltage levels of the external input signal or the external reference signal.
Abstract:
An apparatus for generating an internal clock signal for acquisition of accurate synchronization is provided. The apparatus including: an input buffer for buffering the external clock signal to output a first reference clock signal; a delay compensation circuit for delaying the first reference clock signal; a forward delay array; a mirror control circuit comprising a plurality of phase detectors for detecting delayed clock signals synchronized with a second reference clock signal; a backward delay array; and an output buffer to generate an internal clock signal. An internal clock signal in accurate synchronization with the reference clock signal can be generated by minimizing the delay and distortion of the reference clock signal.
Abstract:
A memory device includes sections arranged between a global bit line and a complementary global bit line, and having a section control unit disposed between first and second memory cell groups and connected between the global bit line and the complementary global bit line to provide a first read signal and a second read signal. A signal converter receives the first and second read signals and generates a stable controlled read signal indicative of a data value stored in the memory cell. A latch unit receives and latches the controlled read signal provided by the signal converter to generate a latched read signal.
Abstract:
A nonvolatile memory device comprises a first voltage generation unit, a second voltage generation unit, a first circuit block, and a discharge unit. The first voltage generation unit generates a first voltage with a first magnitude. The second voltage generation unit generates a second voltage with a second magnitude greater than the first magnitude. The first circuit block selectively receives the first voltage or the second voltage through an input node. The discharge unit discharges the input node between a time point where the input node has been charged with the second voltage and a time point where the input node receives the first voltage.