摘要:
A nonvolatile memory device comprises a first voltage generation unit, a second voltage generation unit, a first circuit block, and a discharge unit. The first voltage generation unit generates a first voltage with a first magnitude. The second voltage generation unit generates a second voltage with a second magnitude greater than the first magnitude. The first circuit block selectively receives the first voltage or the second voltage through an input node. The discharge unit discharges the input node between a time point where the input node has been charged with the second voltage and a time point where the input node receives the first voltage.
摘要:
A semiconductor memory device includes a cell array having a plurality of memory cells, each memory cell including a resistive element and a cell transistor between a bit line and a source line, and a source line voltage supply unit configured to supply, in a normal mode, a reference source line voltage to the source line, and in a test mode, a first source line voltage to the source line when data in a first state is recorded and a second source line voltage to the source line when data in a second state is recorded, the first source line voltage being lower than the reference source line voltage, and the second source line voltage being higher than the reference source line voltage.
摘要:
A non-volatile memory device is employed in which data values are determined by the polarities at both ends of a cell, The non-volatile memory device includes a first decoder which decodes a plurality of predetermined bit values of a row address into a first address and is disposed in a row direction of a memory cell array; a second decoder which decodes the other bit values of the row address into a second address and is disposed in a column direction of the memory cell array; and a driver which applies bias voltages to a word line which corresponds to the first address or the second address in accordance with the data values. By including first and second decoders and decoding a row address in two steps, a bi-directional RRAM according to the present invention can perform addressing at high speeds while reducing chip size.
摘要:
Embodiments of the invention provide a multi-layer semiconductor memory device and a related error checking and correction (ECC) method. The multi-layer semiconductor memory device includes first and second memory cell array layers, wherein the first memory cell array layer stores first payload data. The multi-layer semiconductor memory device also includes an ECC engine selectively connected to the second memory cell array layer and configured to receive the first payload data, generate first parity data corresponding to the first payload data, and store the first parity data exclusively in the second memory cell array layer.
摘要:
The present invention provides a nonvolatile memory device that uses a resistance material. The nonvolatile memory device includes: a stacked memory cell array having a plurality of memory cell layers stacked in a vertical direction, the stacked memory cell array having at least one memory cell group and at least one redundancy memory cell group; and a repair control circuit coupled to the stacked memory cell array, the repair control circuit configured to repair a defective one of the at least one memory cell group with a selected one of the at least one redundancy memory cell group. The features that enable repair improve the fabrication yield of the nonvolatile memory device.
摘要:
A nonvolatile memory device includes a stack-type memory cell array, a selection circuit and a read circuit. The memory cell array includes multiple memory cell layers and a reference cell layer, which are vertically laminated. Each of the memory cell layers includes multiple nonvolatile memory cells for storing data, and the reference cell layer includes multiple reference cells for storing reference data. The selection circuit selects a nonvolatile memory cell from the memory cell layers and at least one reference cell, corresponding to the selected nonvolatile memory cell, from the reference cell layer. The read circuit supplies a read bias to the selected nonvolatile memory cell and the selected reference cell corresponding to the selected nonvolatile memory cell, and reads data from the selected nonvolatile memory cell.
摘要:
A non-volatile memory device, in which data values are determined by polarities at cell terminals, includes a memory cell array. The memory cell array is divided into multiple sub cell arrays, each sub cell array including at least one input/output line and an X-decoder/driver. First input/output lines included in different sub cell arrays may be simultaneously activated and bias voltages may be applied to the activated first input/output lines in accordance with the data values. The non-volatile memory device may be a bi-directional resistive random access memory (RRAM).
摘要:
A resistive memory device is provided. The resistive memory device includes word lines arranged in M rows, bit lines arranged in N columns, local source lines arranged in M/2 rows, and resistive memory cells arranged in M rows and N columns. Each of the resistive memory cells includes a resistance variable element having a first electrode connected to a corresponding bit line, and a cell transistor having a first terminal connected to a second electrode of the resistance variable element, a second terminal connected to a corresponding local source line, and a control terminal connected to a corresponding word line. The local source line is commonly connected to the second terminals of the cell transistors of the two neighboring rows.
摘要:
A semiconductor memory device includes: phase-change memory cells whose states change to a set resistance state or a reset resistance state in response to an applied current pulse; a set pulse driving circuit outputting a set current pulse having first through n-th stages in response to a first control signal and a set control signals wherein current amounts of the first through n-th stages are sequentially reduced and are all greater than a reference current amount; a reset pulse driving circuit outputting a reset current pulse in response to a second control signal; a pull-down device activating the set pulse driving circuit and the reset pulse driving circuit in response to a third control signal; and a write driver control circuit outputting the first through third control signals in response to write data, a set pulse width control signal, and a reset pulse width control signal.