Abstract:
When the control unit makes both the first and second inverter circuits operational, the control unit controls the first and second inverter circuits by duty control such that an average heating output from the first inverter circuit reaches a predetermined first target heating output, and an average heating output from the second inverter circuit reaches a predetermined second target heating output. When the control unit makes one of the first and second inverter circuits operational in an automatic heating mode for automatic heating control according to a predetermined heating output sequence, the control unit inhibits the first and second inverter circuits from being controlled by the duty control.
Abstract:
According to an embodiment of the disclosure, the analyzer includes a reagent driving disk that accommodates a reagent configured for analysis and that transports the reagent to a desired position, and a fixed disk that has a reagent stand-by position in which to make a reagent container containing the reagent, temporarily stand by, and a magnetic particles stirring position for stirring magnetic particles. A portion of the reagent stand-by position is constituted by a loading system. A reagent container moving unit moves reagent containers containing the reagent, between the reagent driving unit and the fixed disk, according to analytical request status. Providing in a part of the fixed disk the loading system constructed so that reagent containers containing the reagent can be mounted therein during operation enables changing of reagent containers, irrespective of an operational status of the reagent driving disk, and the system to having cold-storage functionality.
Abstract:
A main shaft has a shaft cylindrical portion extending from an outer periphery of a large-diameter portion. A drum has a drum cylindrical portion extending from an outer periphery of a drum plate portion. An axial forward end of the drum cylindrical portion is arranged in an inside of the shaft cylindrical portion. A frictional engagement unit of a clutch is provided in an inside of the shaft cylindrical portion. A motor generator has a rotor, which is firmly fitted to outer walls of the large-diameter portion and the shaft cylindrical portion and rotatable relative to a stator. A working-oil supply passage is formed in an inside of an input shaft.
Abstract:
A shaft seal packing exhibits high sealability at the time of initial assembly and also exhibits, even after the packing is retightened, excellent sealability by an increased seal surface pressure obtained through an effect of pressing and by self-sealability obtained through an effect of fluid pressure. A shaft seal structure for a valve includes a body for a valve, a valve shaft, a valve disc disposed within the body so as to be rotatable or capable of ascending and descending, a valve shaft seal chamber having the valve shaft axially attached thereto, a shaft seal packing that is attached to the shaft seal chamber and comprises annular packing bodies stacked and substantially V-shaped in cross section, with stacked layer faces on the inner-diameter side of the packing bodies brought into tight contact with one another and stacked layer faces on the outer-diameter side of the packing bodies formed with prescribed gaps between the adjacent stacked layer faces. In the shaft seal structure for a valve, a tightening load on the packing bodies and fluid pressure are converted to a force in the diametrical direction owing to inclined angles of stacked layer faces on the inner-diameter side to attain a seal by a surface contact between the inner peripheral surface on the inner-diameter side and the outer peripheral surface of the valve shaft on a sliding side, and a lip part on the outer-diameter side is pushed and spread owing to the gaps to attain a seal by a line contact with the shaft seal chamber on a fixed side.
Abstract:
The present invention relates to a technique for efficient isolation of long nucleic acids and short nucleic acids from a sample containing long nucleic acids and short nucleic acids via safe and convenient operations. Specifically, long nucleic acids and short nucleic acids are isolated from a sample containing nucleic acids by mixing a chaotropic agent with the sample containing nucleic acids, allowing the mixed solution to pass at least twice through a first solid phase containing silica that has passage pores having predetermined pore sizes, allowing the mixed solution to pass at least twice through a second solid phase containing silica that has passage pores having pore sizes smaller than those of the first solid phase containing silica, and separately recovering nucleic acids that have bound to the first solid phase containing silica and those that have bound to the second solid phases containing silica.
Abstract:
It is an object of the present invention to prevent condensation occurring when reaction solutions in sealed vessels are heated in a nucleic acid analyzer for performing sequential processing in which individual reaction vessels are sequentially fed to a nucleic acid amplification unit in a given cycle. This invention relates to a nucleic acid analyzer including a vessel mounting rack capable of holding the plurality of reaction vessels, wherein the reaction vessel mounted on the vessel mounting rack is heated by an adjacent noncontact heat source and air circulation from the heat source to a reaction vessel upper portion, and a temperature of the reaction vessel upper portion is kept higher than a temperature of a reaction vessel lower portion. With this invention, condensation possibly occurring on the inner wall of the sealed vessel upper portion due to heating during nucleic acid amplification can be prevented, and more accurate nucleic acid analysis is enabled.
Abstract:
There is provided a semiconductor device including an output buffer circuit which reduces an area occupied by a circuit for impedance adjustment and allows high-speed impedance adjustment. In an impedance measuring circuit, the impedance values of reference transistors having the same sizes as those of a plurality of transistors composing the output buffer circuit which are equal in size are measured. An impedance code generating circuit outputs impedance codes corresponding to the impedance values of the reference transistors to an output buffer code generating circuit based on the result of the measurement from the impedance measuring circuit. The output buffer code generating circuit generates output buffer codes for adjusting the impedance of the output buffer circuit by performing an arithmetic operation process to provide an objective impedance based on the impedance codes.
Abstract:
A nucleic acid isolation apparatus and method enables nucleic acid isolation from a nucleic-acid-containing sample quickly with high nucleic acid yield and purity. A nucleic acid isolation instrument 11 is supported by a stand 41 via a rib 19 (A). A solution is loaded into a first container 15 via a first opening portion 14 with a loading pipette tip 42. A pressurizing/depressurizing device 43 for controlling the pressure inside the first container 15 and the second container 13 individually is closely fitted in the first opening portion 14 and the second opening portion 12 via a connecting member 44 (B). The pressurizing/depressurizing device 43 pressurizes the inside of the first container 15 while it depressurizes the inside of the second container 13 so as to move the solution from the container 15 to the container 13 via a solid phase 16 (C). After the operation of moving the solution through the solid phase 16 is conducted an appropriate number of times, the pressurizing/depressurizing device 43 is detached from the first and second opening portions 14 and 12. The solution that has moved into the second container 13 is aspirated with an unloading pipette tip 45 via the second opening portion 12 and then unloaded out of the instrument 11 (D).
Abstract:
The present invention relates to a technique for efficient isolation of long nucleic acids and short nucleic acids from a sample containing long nucleic acids and short nucleic acids via safe and convenient operations. Specifically, long nucleic acids and short nucleic acids are isolated from a sample containing nucleic acids by mixing a chaotropic agent with the sample containing nucleic acids, allowing the mixed solution to pass at least twice through a first solid phase containing silica that has passage pores having predetermined pore sizes, allowing the mixed solution to pass at least twice through a second solid phase containing silica that has passage pores having pore sizes smaller than those of the first solid phase containing silica, and separately recovering nucleic acids that have bound to the first solid phase containing silica and those that have bound to the second solid phases containing silica.
Abstract:
In a sensor head, parallel rays or approximately parallel rays are generated by a pair of condenser lenses that reciprocate according to vibrations of a collimate lens and a tuning fork, and go out from a light port. To the light port, a lens holder in which an objective lens is supported is detachably attached. The light from the light port is processed to measurement beams that are condensed by the objective lens to a predetermined position.