Abstract:
The film formation method includes transferring an object to be processed into a process chamber; controlling a temperature of the object to be processed to be equal to or lower than 350° C.; and supplying an aminosilane gas as a Si source gas and an oxidizing gas into the process chamber, wherein the oxidizing gas consists of a first oxidizing gas comprising at least one selected from the group consisting of an O2 gas and an O3 gas, and a second oxidizing gas comprising at least one selected from the group consisting of a H2O gas and a H2O2 gas, thereby forming a silicon oxide film on a surface of the object to be processed.
Abstract:
First, mapping data storing interrupted areas is obtained. In a first modified-layer forming step, before a stacked article is stacked on a front surface of a substrate, a laser beam is directed to the interrupted areas based on the mapping data to form modified layers only at the interrupted areas. After the stacked articles have been stacked on the substrate, in a second modified-layer forming step, the laser beam is directed at least to the predetermined dividing line formed with no modified layer in the first modified-layer forming step to form a modified layer.
Abstract:
The present invention provides formulation parameters and manufacturing conditions for stable pharmaceutical compositions comprising N-{4-(2,2-dimethyl-propionyl)-(5R)-5-[(2-ethylamino-ethanesulfonylamino)-methyl]-5-phenyl-4,5-dihydro-[1,3,4]thiadiazol-2-yl}-2,2-dimethyl-propionamide that minimize undesirable chiral conversion to the less active S enantiomeric form.
Abstract:
A method of forming embrittled areas in multiple layers inside a wafer so as to enable the wafer to be divided correctly even at areas where embrittled areas intersect. In a first direction embrittling step an embrittled area is formed as a bottom layer, in a second direction embrittling step embrittled areas are formed as a bottom layer and a second layer, in the first direction embrittling step the embrittled areas are formed as a second layer and a third layer, and thereafter, the second direction embrittling step and the first direction embrittling step are alternately implemented, and finally, in the second direction embrittling step, embrittled area is formed as a top layer, so that a length of an unprocessed area is contained within a range that does not interfere with division.
Abstract:
First, mapping data storing interrupted areas is obtained. In a first modified-layer forming step, before a stacked article is stacked on a front surface of a substrate, a laser beam is directed to the interrupted areas based on the mapping data to form modified layers only at the interrupted areas. After the stacked articles have been stacked on the substrate, in a second modified-layer forming step, the laser beam is directed at least to the predetermined dividing line formed with no modified layer in the first modified-layer forming step to form a modified layer.
Abstract:
A method of dividing, along lattice pattern-like dividing lines, a wafer which has the lattice pattern-like dividing lines and a polymer film on the front surface of a substrate and is processed to allow for division along the dividing lines, the method comprising a frame holding step for putting the wafer on the surface of an adhesive tape mounted on an annular frame; a wafer cooling step for cooling the wafer that is affixed to the surface of the adhesive tape mounted on the annular frame; and a diving step for dividing the wafer along the dividing lines by expanding the adhesive tape to which the cooled wafer is affixed.
Abstract:
The present invention can provide a solvate, a cubic crystal and a columnar crystal of 2-amino-6-benzyloxypurine by crystallization from (1) a solvent containing at least one kind of solvent selected from the group consisting of alcohol and water, (2) alcohol or (3) a water-containing solvent.
Abstract:
In a portable wireless information terminal apparatus, a terminal main body unit having a receiver unit and a transmitter unit. A data display unit is movably provided on the terminal main body unit.
Abstract:
Technical problems of this invention is to create an injection molding device and an injection molding process for a test tube shaped preform, that can laminate a colored layer at certain positions of a wall of the reform with a certain thickness in a manner of a high degree of accuracy.A feature associated with the injection molding device to solve these problem comprising a nozzle section, in which a molten main resin and a molten second resin are join together to form a joined resin mass, the nozzle section comprising: an outer flow channel through which the main resin flows, an inner flow channel through which the second resin flows, a cylindrical column-shaped joined flow channel where the second resin from the inner flow channel joins the main resin from the outer flow channel, a first confluence disposed at a point where the main resin from the outer flow channel flows into the joined flow channel, a second confluence disposed at a point where the second resin flows into the joined flow channel wherein the first confluence is located downstream of the second confluence with a predetermined space left in between, and a cylindrical shutoff pin inserted slidably in the joined flow channel, wherein this shutoff pin is capable of shutting off or opening either or both of the first confluence and/or the second confluence, depending on the sliding position.
Abstract:
A cable coupler including an external cylinder mechanism having an inner conductor for electrically connecting the inner conductor itself to the outer conductors of the shielded cables, an outer conductor having a larger diameter than the inner conductor, a gap portion disposed between the inner conductor and the outer conductor, and capacitors arranged in the gap portion, for electrically connecting between the outer conductor and the inner conductor, an inner portion of the external cylinder mechanism being able to be opened and closed along a longitudinal direction, an internal coupling mechanism placed inside the inner conductor and having connecting pins for holding the core wires of the shielded cables, for electrically connecting between the core wires of the shielded cables, and a base for holding the external cylinder mechanism and for electrically connecting the external cylinder mechanism to an external conductor.