Abstract:
An illumination device, such as a backlight for electronic display devices, is disclosed. The illumination device includes a viscoelastic lightguide optically coupled to a light source, and a nanovoided polymeric layer is used in conjunction with the lightguide to manage light emitted by the light source. The viscoelastic lightguide may be a pressure sensitive adhesive.
Abstract:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.
Abstract:
A fabric with a laminated adhesive-backed protective layer. The adhesive-backed protective layer has a matte finish that is low gloss and may approximate the fabric itself.
Abstract:
Hybrid signage capable of self illumination and having an active backlight. The signage includes a turning film having a structured surface for redirecting light in order to passively illuminate a printed graphic or shaped sign when the backlight is off. In the shaped sign, the shape provides the content, such as letters, to be conveyed to the viewer instead of a graphic. The signage can be actively illuminated when the backlight is on to supplemental the passive illumination.
Abstract:
A backlight is disclosed and includes a visible light transmissive body primarily propagating light by TIR with a light input surface and a light output surface and a light guide portion and a light input portion. The light guide portion has a light reflection surface and a light emission surface. The light input portion has opposing side surfaces that are not parallel. One of the opposing surfaces is co-planar with either the light emission surface or the light reflection surface. A light source is disposed adjacent to the light input surface. The light source emits light into the light input portion. A reflective layer is disposed adjacent to or on the opposing side surfaces.