Abstract:
Various techniques for processing instructions that specify multiple destinations. A first portion of a processor pipeline is configured to split a multi-destination instruction into a plurality of single-destination operations. A second portion of the pipeline is configured to process the plurality of single-destination operations. A third portion of the pipeline is configured to merge the plurality of single-destination operations into one or more multi-destination operations. The one or more multi-destination operations may be performed. The first portion of the pipeline may include a decode unit. The second portion of the pipeline may include a map unit, which may in turn include circuitry configured to maintain a list of free architectural registers and a mapping table that maps physical registers to architectural registers. The third portion of the pipeline may comprise a dispatch unit. In some embodiments, this may provide certain advantages such as reduced area and/or power consumption.
Abstract:
An SOC implements a security enclave processor (SEP). The SEP may include a processor and one or more security peripherals. The SEP may be isolated from the rest of the SOC (e.g. one or more central processing units (CPUs) in the SOC, or application processors (APs) in the SOC). Access to the SEP may be strictly controlled by hardware. For example, a mechanism in which the CPUs/APs can only access a mailbox location in the SEP is described. The CPU/AP may write a message to the mailbox, which the SEP may read and respond to. The SEP may include one or more of the following in some embodiments: secure key management using wrapping keys, SEP control of boot and/or power management, and separate trust zones in memory.
Abstract:
In one embodiment, a memory that is delineated into transparent and non-transparent portions. The transparent portion may be controlled by a control unit coupled to the memory, along with a corresponding tag memory. The non-transparent portion may be software controlled by directly accessing the non-transparent portion via an input address. In an embodiment, the memory may include a decoder configured to decode the address and select a location in either the transparent or non-transparent portion. Each request may include a non-transparent attribute identifying the request as either transparent or non-transparent. In an embodiment, the size of the transparent portion may be programmable. Based on the non-transparent attribute indicating transparent, the decoder may selectively mask bits of the address based on the size to ensure that the decoder only selects a location in the transparent portion.
Abstract:
In one embodiment, a memory that is delineated into transparent and non-transparent portions. The transparent portion may be controlled by a control unit coupled to the memory, along with a corresponding tag memory. The non-transparent portion may be software controlled by directly accessing the non-transparent portion via an input address. In an embodiment, the memory may include a decoder configured to decode the address and select a location in either the transparent or non-transparent portion. Each request may include a non-transparent attribute identifying the request as either transparent or non-transparent. In an embodiment, the size of the transparent portion may be programmable. Based on the non-transparent attribute indicating transparent, the decoder may selectively mask bits of the address based on the size to ensure that the decoder only selects a location in the transparent portion.
Abstract:
In an embodiment, a processor may be configured to fetch N instruction bytes from an instruction cache (a “fetch group”), even if the fetch group crosses a cache line boundary. A branch predictor may be configured to produce branch predictions for up to M branches in the fetch group, where M is a maximum number of branches that may be included in the fetch group. In an embodiment, a branch direction predictor may be updated responsive to a misprediction and also responsive to the branch prediction being within a threshold of transitioning between predictions. To avoid a lookup to determine if the threshold update is to be performed, the branch predictor may detect the threshold update during prediction, and may transmit an indication with the branch.
Abstract:
In one embodiment, a memory that is delineated into transparent and non-transparent portions. The transparent portion may be controlled by a control unit coupled to the memory, along with a corresponding tag memory. The non-transparent portion may be software controlled by directly accessing the non-transparent portion via an input address. In an embodiment, the memory may include a decoder configured to decode the address and select a location in either the transparent or non-transparent portion. Each request may include a non-transparent attribute identifying the request as either transparent or non-transparent. In an embodiment, the size of the transparent portion may be programmable. Based on the non-transparent attribute indicating transparent, the decoder may selectively mask bits of the address based on the size to ensure that the decoder only selects a location in the transparent portion.
Abstract:
Various techniques for processing instructions that specify multiple destinations. A first portion of a processor pipeline is configured to split a multi-destination instruction into a plurality of single-destination operations. A second portion of the pipeline is configured to process the plurality of single-destination operations. A third portion of the pipeline is configured to merge the plurality of single-destination operations into one or more multi-destination operations. The one or more multi-destination operations may be performed. The first portion of the pipeline may include a decode unit. The second portion of the pipeline may include a map unit, which may in turn include circuitry configured to maintain a list of free architectural registers and a mapping table that maps physical registers to architectural registers. The third portion of the pipeline may comprise a dispatch unit. In some embodiments, this may provide certain advantages such as reduced area and/or power consumption.
Abstract:
In one embodiment, a memory that is delineated into transparent and non-transparent portions. The transparent portion may be controlled by a control unit coupled to the memory, along with a corresponding tag memory. The non-transparent portion may be software controlled by directly accessing the non-transparent portion via an input address. In an embodiment, the memory may include a decoder configured to decode the address and select a location in either the transparent or non-transparent portion. Each request may include a non-transparent attribute identifying the request as either transparent or non-transparent. In an embodiment, the size of the transparent portion may be programmable. Based on the non-transparent attribute indicating transparent, the decoder may selectively mask bits of the address based on the size to ensure that the decoder only selects a location in the transparent portion.