Self-mixing interference device for sensing applications

    公开(公告)号:US11549799B2

    公开(公告)日:2023-01-10

    申请号:US16913645

    申请日:2020-06-26

    Applicant: Apple Inc.

    Abstract: Disclosed herein are self-mixing interferometry (SMI) sensors, such as may include vertical cavity surface emitting laser (VCSEL) diodes and resonance cavity photodetectors (RCPDs). Structures for the VCSEL diodes and RCPDs are disclosed. In some embodiments, a VCSEL diode and an RCPD are laterally adjacent and formed from a common set of semiconductor layers epitaxially formed on a common substrate. In some embodiments, a first and a second VCSEL diode are laterally adjacent and formed from a common set of semiconductor layers epitaxially formed on a common substrate, and an RCPD is formed on the second VCSEL diode. In some embodiments, a VCSEL diode may include two quantum well layers, with a tunnel junction layer between them. In some embodiments, an RCPD may be vertically integrated with a VCSEL diode.

    VCSEL array with tight pitch and high efficiency

    公开(公告)号:US11418010B2

    公开(公告)日:2022-08-16

    申请号:US16812411

    申请日:2020-03-09

    Applicant: Apple Inc.

    Abstract: An optoelectronic device includes a semiconductor substrate. A first set of thin-film layers is disposed on the substrate and defines a lower distributed Bragg-reflector (DBR) stack. A second set of thin-film layers is disposed over the lower DBR stack and defines an optical emission region, which is contained in a mesa defined by multiple trenches, which are disposed around the optical emission region without fully surrounding the optical emission region. A third set of thin-film layers is disposed over the optical emission region and defines an upper DBR stack. Electrodes are disposed around the mesa in gaps between the trenches and are configured to apply an excitation current to the optical emission region.

    Emitter array with uniform brightness

    公开(公告)号:US20210313764A1

    公开(公告)日:2021-10-07

    申请号:US17221856

    申请日:2021-04-05

    Applicant: Apple Inc.

    Abstract: An optoelectronic device includes a semiconductor substrate and an array of emitters disposed on the substrate, including at least first emitters disposed in a central zone of the array and second emitters disposed in at least one peripheral zone of the array, surrounding the central zone. The array includes at least one cathode and at least one anode disposed on opposing sides of the emitters. The first emitters have a first resistance between the at least one cathode and the at least one anode, and the second emitters have a second resistance, greater than the first resistance, between the at least one cathode and the at least one anode. A drive circuit is coupled to apply a selected voltage between the at least one cathode and the at least one anode so as to cause the emitters to emit optical radiation.

    VCSEL array with tight pitch and high efficiency

    公开(公告)号:US20200313391A1

    公开(公告)日:2020-10-01

    申请号:US16812411

    申请日:2020-03-09

    Applicant: Apple Inc.

    Abstract: An optoelectronic device includes a semiconductor substrate. A first set of thin-film layers is disposed on the substrate and defines a lower distributed Bragg-reflector (DBR) stack. A second set of thin-film layers is disposed over the lower DBR stack and defines an optical emission region, which is contained in a mesa defined by multiple trenches, which are disposed around the optical emission region without fully surrounding the optical emission region. A third set of thin-film layers is disposed over the optical emission region and defines an upper DBR stack. Electrodes are disposed around the mesa in gaps between the trenches and are configured to apply an excitation current to the optical emission region.

    Wafer-level high aspect ratio beam shaping

    公开(公告)号:US10705347B2

    公开(公告)日:2020-07-07

    申请号:US16399937

    申请日:2019-04-30

    Applicant: Apple Inc.

    Abstract: A light-emitting device includes a semiconductor substrate, a surface-emitting semiconductor light source on the semiconductor substrate, a monolithic first dielectric, and a second dielectric. The monolithic first dielectric is transparent to light emitted by the light source and includes first and second micro-lenses adjacent an aperture of the light source and having axes parallel to and offset from an axis of a beam of light emitted by the light source, and a saddle-shaped lens over the aperture of the light source. The saddle-shaped lens connects the first and second micro-lenses and reshapes the beam of light emitted by the light source to have a high aspect ratio. The second dielectric is transparent to light emitted by the light source and encapsulates a light emission surface of the saddle-shaped lens. The second dielectric has a higher refractive index than the monolithic first dielectric.

    Creating arbitrary patterns on a 2-D uniform grid VCSEL array

    公开(公告)号:US10700493B2

    公开(公告)日:2020-06-30

    申请号:US16524313

    申请日:2019-07-29

    Applicant: APPLE INC.

    Abstract: An optoelectronic device includes a semiconductor substrate and an array of optoelectronic cells, formed on the semiconductor substrate. The cells include first epitaxial layers defining a lower distributed Bragg-reflector (DBR) stack; second epitaxial layers formed over the lower DBR stack, defining a quantum well structure; third epitaxial layers, formed over the quantum well structure, defining an upper DBR stack; and electrodes formed over the upper DBR stack, which are configurable to inject an excitation current into the quantum well structure of each optoelectronic cell. A first set of the optoelectronic cells are configured to emit laser radiation in response to the excitation current. In a second set of the optoelectronic cells, interleaved with the first set, at least one element of the optoelectronic cells, selected from among the epitaxial layers and the electrodes, is configured so that the optoelectronic cells in the second set do not emit the laser radiation.

Patent Agency Ranking