Abstract:
A processing system includes: a vacuum chamber; a plurality of processing systems attached around the vacuum chamber; and a wafer handling system in the vacuum chamber for moving the wafer among the plurality of processing systems without exiting from a vacuum. A physical vapor deposition system for manufacturing an extreme ultraviolet blank comprising: a target comprising molybdenum, molybdenum alloy, or a combination thereof.
Abstract:
An extreme ultraviolet mask and method of manufacture thereof includes: providing a glass-ceramic block; forming a glass-ceramic substrate from the glass-ceramic block; and depositing a planarization layer on the glass-ceramic substrate.
Abstract:
A photoresist vapor deposition system includes: a vacuum chamber having a heating element and cooled chuck for holding a substrate, the vacuum chamber having a heated inlet; and a vapor deposition system connected to the heated inlet for volatilizing a precursor into the vacuum chamber for condensing a photoresist over the substrate cooled by the cooled chuck. The deposition system creates a semiconductor wafer system that includes: a semiconductor wafer; and a vapor deposited photoresist over the semiconductor wafer. An extreme ultraviolet lithography system requiring the semiconductor wafer system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for imaging the light from the extreme ultraviolet light source; and a wafer stage for placing a semiconductor wafer with a vapor deposited photoresist.
Abstract:
A photoresist vapor deposition system includes: a vacuum chamber having a heating element and cooled chuck for holding a substrate, the vacuum chamber having a heated inlet; and a vapor deposition system connected to the heated inlet for volatilizing a precursor into the vacuum chamber for condensing a photoresist over the substrate cooled by the cooled chuck. The deposition system creates a semiconductor wafer system that includes: a semiconductor wafer; and a vapor deposited photoresist over the semiconductor wafer. An extreme ultraviolet lithography system requiring the semiconductor wafer system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for imaging the light from the extreme ultraviolet light source; and a wafer stage for placing a semiconductor wafer with a vapor deposited photoresist.
Abstract:
An integrated extreme ultraviolet (EUV) blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a first deposition system for depositing a planarization layer having a planarized top surface over the substrate; and a second deposition system for depositing a multi-layer stack on the planarization layer without removing the substrate from the vacuum. The EUV blank is in an EUV lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the EUV source; a reticle stage for placing a EUV mask blank with a planarization layer; and a wafer stage for placing a wafer. The EUV blank includes: a substrate; a planarization layer to compensate for imperfections related to the surface of the substrate, the planarization layer having a flat top surface; and a multi-layer stack on the planarization layer.
Abstract:
An integrated extreme ultraviolet (EUV) blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a first deposition system for depositing a planarization layer having a planarized top surface over the substrate; and a second deposition system for depositing a multi-layer stack on the planarization layer without removing the substrate from the vacuum. The EUV blank is in an EUV lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the EUV source; a reticle stage for placing a EUV mask blank with a planarization layer; and a wafer stage for placing a wafer. The EUV blank includes: a substrate; a planarization layer to compensate for imperfections related to the surface of the substrate, the planarization layer having a flat top surface; and a multi-layer stack on the planarization layer.