Abstract:
An integrated extreme ultraviolet (EUV) blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a first deposition system for depositing a planarization layer having a planarized top surface over the substrate; and a second deposition system for depositing a multi-layer stack on the planarization layer without removing the substrate from the vacuum. The EUV blank is in an EUV lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the EUV source; a reticle stage for placing a EUV mask blank with a planarization layer; and a wafer stage for placing a wafer. The EUV blank includes: a substrate; a planarization layer to compensate for imperfections related to the surface of the substrate, the planarization layer having a flat top surface; and a multi-layer stack on the planarization layer.
Abstract:
An integrated extreme ultraviolet (EUV) blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a first deposition system for depositing a planarization layer having a planarized top surface over the substrate; and a second deposition system for depositing a multi-layer stack on the planarization layer without removing the substrate from the vacuum. The EUV blank is in an EUV lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the EUV source; a reticle stage for placing a EUV mask blank with a planarization layer; and a wafer stage for placing a wafer. The EUV blank includes: a substrate; a planarization layer to compensate for imperfections related to the surface of the substrate, the planarization layer having a flat top surface; and a multi-layer stack on the planarization layer.
Abstract:
A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a base material from a first nozzle and an additive material from a second nozzle and solidifying the base and additive material to form a solidified pad material.
Abstract:
In some embodiments, a method of forming an etch mask on a substrate is provided that includes (1) forming a resist layer on a substrate; (2) exposing one or more regions of the resist layer to an energy source so as to alter at least one of a physical property and a chemical property of the exposed regions; (3) performing a hardening process on the resist layer to increase the etch resistance of first regions of the resist layer relative to second regions of the resist layer, the hardening process including exposing the resist layer to one or more reactive species within an atomic layer deposition (ALD) chamber; and (4) dry etching the resist layer to remove the one or more second regions and to form a pattern in the resist layer. Other embodiments are provided.
Abstract:
Provided are methods for selective deposition. Certain methods describe providing a first substrate surface; providing a second substrate surface; depositing a first layer of film over the first and second substrate surfaces, wherein the deposition has an incubation delay over the second substrate surface such that the first layer of film over the first substrate surface is thicker than the first layer of film deposited over the second substrate surface; and etching the first layer of film over the first and second substrate surfaces, wherein the first layer of film over the second substrate surface is at least substantially removed, but the first layer of film over the first substrate is only partially removed.
Abstract:
A photoresist vapor deposition system includes: a vacuum chamber having a heating element and cooled chuck for holding a substrate, the vacuum chamber having a heated inlet; and a vapor deposition system connected to the heated inlet for volatilizing a precursor into the vacuum chamber for condensing a photoresist over the substrate cooled by the cooled chuck. The deposition system creates a semiconductor wafer system that includes: a semiconductor wafer; and a vapor deposited photoresist over the semiconductor wafer. An extreme ultraviolet lithography system requiring the semiconductor wafer system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for imaging the light from the extreme ultraviolet light source; and a wafer stage for placing a semiconductor wafer with a vapor deposited photoresist.
Abstract:
Provided are methods of depositing hafnium or zirconium containing metal alloy films. Certain methods comprise sequentially exposing a substrate surface to alternating flows of an organometallic precursor and a reductant comprising M(BH4)4 to produce a metal alloy film on the substrate surface, wherein M is selected from hafnium and zirconium, and the organometallic precursor contains a metal N. Gate stacks are described comprising a copper barrier layer comprising boron, a first metal M selected from Hf and Zr, and a second metal N selected from tantalum, tungsten, copper, ruthenium, rhodium, cobalt and nickel; and a copper layer overlying the copper barrier seed layer.
Abstract:
A photoresist vapor deposition system includes: a vacuum chamber having a heating element and cooled chuck for holding a substrate, the vacuum chamber having a heated inlet; and a vapor deposition system connected to the heated inlet for volatilizing a precursor into the vacuum chamber for condensing a photoresist over the substrate cooled by the cooled chuck. The deposition system creates a semiconductor wafer system that includes: a semiconductor wafer; and a vapor deposited photoresist over the semiconductor wafer. An extreme ultraviolet lithography system requiring the semiconductor wafer system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for imaging the light from the extreme ultraviolet light source; and a wafer stage for placing a semiconductor wafer with a vapor deposited photoresist.
Abstract:
A photoresist vapor deposition system includes: a vacuum chamber having a heating element and cooled chuck for holding a substrate, the vacuum chamber having a heated inlet; and a vapor deposition system connected to the heated inlet for volatilizing a precursor into the vacuum chamber for condensing a photoresist over the substrate cooled by the cooled chuck. The deposition system creates a semiconductor wafer system that includes: a semiconductor wafer; and a vapor deposited photoresist over the semiconductor wafer. An extreme ultraviolet lithography system requiring the semiconductor wafer system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for imaging the light from the extreme ultraviolet light source; and a wafer stage for placing a semiconductor wafer with a vapor deposited photoresist.
Abstract:
Provided are methods for selective deposition. Certain methods describe providing a first substrate surface; providing a second substrate surface; depositing a first layer of film over the first and second substrate surfaces, wherein the deposition has an incubation delay over the second substrate surface such that the first layer of film over the first substrate surface is thicker than the first layer of film deposited over the second substrate surface; and etching the first layer of film over the first and second substrate surfaces, wherein the first layer of film over the second substrate surface is at least substantially removed, but the first layer of film over the first substrate is only partially removed.