Abstract:
An aqueous gel-forming composition, e.g. a fire retardant coating composition, comprises an aluminosilicate, the aluminosilicate comprising alkali metal aluminate and an alkali metal silicate, and an organic liquid having a boiling point greater than 11O° C., e.g. silicone oil. The molar ratio of SiO2:X2O for the alkali metal silicate is from 3.6:1 to 10:1, where X represents the alkali metal of the alkali metal silicate, when the alkali metal aluminate has a molar ratio of Y2O:AI2O3 of 1.35:1, where Y represents the alkali metal of the alkali metal aluminate, this providing improved water resistance for films or coatings prepared from the compositions by drying and curing.
Abstract:
A method of using a zeolite composition comprises forming a mixture of (a) a crystalline aluminosilicate and (b) a salt of a second metal selected from the group consisting of Group III metals, metallic elements of Group IV, magnesium, titanium, chromium, iron, nickel, copper, zinc, zirconium and silver, said salt of a second metal being present in an amount which is sufficient to replace from about 2.0 to about 40 percent of a first metal moiety, and using said mixture in an aqueous composition at a pH in the range 4 to 10. A further aspect of the invention is a powder comprising a mixture of (a) a crystalline aluminosilicate and (b) a salt of a second metal selected from the group consisting of Group III metals, metallic elements of Group IV, magnesium, titanium, chromium, iron, nickel, copper, zinc, zirconium and silver, said salt of a second metal being present in an amount which is sufficient to replace from about 2.0 to about 40 per cent of a first metal moiety. Methods according to the invention include paper making, paint preparation, dental applications, use of detergents and adsorption and catalytic applications.
Abstract:
P-type zeolite having the oxide formula M2/nAl2O3 (1.8-2.66) SiO2 y H2O and having a Calcium Binding Capacity of between 100 and 145 mg/g, preferably between 110 and 140 and a Calcium uptake rate of between 12 and 100 seconds, preferably below 50 seconds can be prepared from metakaolin.
Abstract translation:具有氧化式M 2 / n Al 2 O 3(1.8-2.66)SiO 2 y H 2 O并且具有100至145mg / g,优选110至140的钙结合容量和12至100秒的钙吸收速率的P型沸石 ,优选低于50秒可以从偏高岭土制备。
Abstract:
The invention describes a process for preparing P zeolites in which aluminate and silicate solutions are reacted in the presence of a P-zeolite seed.
Abstract:
The present invention provides the following:(a) An aluminophosphorus compound wherein the atomic ratio of P to Al exceeds 1:1 and having anion exchange properties.(b) A process for preparing such an aluminophosphorus compound comprising treating an aluminous compound, for example a zeolite, a clay, or alumina with a melt comprising a phosphate, for example ammonium dihydrogen orthophosphate, and removing excess phosphate from the compound thereby formed.(c) A process for at least partially removing anions from an aqueous solution which comprises contacting the aqueous solution containing the anions with the aluminophosphorus compound.(d) A process for the chromatographic separation of two anions in aqueous solution wherein the chromatographic stationary phase comprises the aluminophosphorus compound.
Abstract:
A dressing composition for use as a skin dressing comprises an elastomeric-adhesive composition, and a zeolite comprising releasably adsorbed nitric oxide. The zeolite may comprise a transition metal cation such as Co, Fe, Mn, Ni, Cu, Zn, Ag or a mixture thereof as an extra-framework metal cation, preferably Zn. The elastomeric adhesive composition may be a hydrocolloid-adhesive composition comprising, hydrocolloid and elastomer. The dressing composition releases nitric oxide, which may have beneficial effects, when used on wounds or moist skin, with a substantially constant release rate over a long period of time. A dressing including a layer of the dressing composition has a backing layer and may have a release liner removably attached to the skin-contacting surface of the dressing layer.
Abstract:
The present invention relates to a method of manufacturing a fire retardant composite, a composite of a foamed polymer having a coating with fire retardant properties, and also the use of such composites. The method according to the present invention comprises the following steps: i) providing beads of foamed polymer, ii) applying a coating on the beads of step i) and iii) shaping the thus coated beads into said composite.
Abstract:
The present invention relates to a method of manufacturing a fire retardant composite, a composite of a foamed polymer having a coating with fire retardant properties, and also the use of such composites. The method according to the present invention comprises the following steps: i) providing beads of foamed polymer, ii) applying a coating on the beads of step i) and iii) shaping the thus coated beads into said composite.
Abstract:
A dentifrice composition comprising an abrasive system comprising at least one abrasive silica which may be selected from a first silica having a Radioactive Dental Abrasion (RDA) in the range 30 to 150 and a second silica an RDA in the range 100 to 300, and a crystalline aluminosilicate having an average crystallite size below 0.2 μm plus an orally acceptable carrier. The content by weight of the first silica being greater than that of the second silica and the RDA of the second silica being greater than that of first silica.
Abstract:
The invention describes a process for preparing P zeolites in which aluminate and silicate solutions are reacted in the presence of a P-zeolite seed.