摘要:
A method for manufacturing a variable resistance element includes the steps of: depositing a variable resistance material (106) in a contact hole (105), which is formed on an interlayer insulating layer (104) on a substrate and has a lower electrode (103) at a bottom portion thereof, such that an upper surface of the variable resistance material (106) in the contact hole (105) is located lower than an upper surface of the interlayer insulating layer (104); depositing an upper electrode material on the deposited variable resistance material (106) such that an upper surface of the upper electrode material in the contact hole (105) is located higher than the upper surface of the interlayer insulating layer (104); and element-isolating by a CMP the variable resistance element including the variable resistance material (106) and the upper electrode material.
摘要:
A variable resistance element including: a first electrode; a second electrode; and a variable resistance layer having a resistance value which reversibly changes according to electrical signals applied, wherein the variable resistance layer includes a first variable resistance layer comprising a first oxygen-deficient transition metal oxide, and a second variable resistance layer comprising a second transition metal oxide having a degree of oxygen deficiency lower than a degree of oxygen deficiency of the first transition metal oxide layer, the second electrode has a single needle-shaped part at the interface with the second variable resistance layer, and the second variable resistance layer is interposed between the first variable resistance layer and the second electrode, is in contact with the first variable resistance layer and the second electrode, and covers the needle-shaped part.
摘要:
A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.
摘要:
A nonvolatile memory device includes via holes (12) formed at cross sections where first wires (11) cross second wires (14), respectively, and current control elements (13) each including a current control layer (13b), a first electrode layer (13a) and a second electrode layer (13c) such that the current control layer (13b) is sandwiched between the first electrode layer (13a) and the second electrode layer (13c), in which resistance variable elements (15) are provided inside the via holes (12), respectively, the first electrode layer (13a) is disposed so as to cover the via hole (12), the current control layer (13b) is disposed so as to cover the first electrode layer (13a), the second electrode layer (13c) is disposed on the current control layer (13b), a wire layer (14a) of the second wire is disposed on the second electrode layer (13c), and the second wires (14) each includes the current control layer (13b), the second electrode layer (13c) and the wire layer (14a) of the second wire.
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
A method for manufacturing a nonvolatile storage element that minimizes shape shift between an upper electrode and a lower electrode, and which includes: depositing, in sequence, a connecting electrode layer which is conductive, a lower electrode layer and a variable resistance layer which are made of a non-noble metal nitride and are conductive, an upper electrode layer made of noble metal, and a mask layer; forming the mask layer into a predetermined shape; forming the upper electrode layer, the variable resistance layer, and the lower electrode layer into the predetermined shape by etching using the mask layer as a mask; and removing, simultaneously, the mask and a region of the connecting electrode layer that has been exposed by the etching.
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.
摘要:
A method for manufacturing a nonvolatile storage element that minimizes shape shift between an upper electrode and a lower electrode, and which includes: depositing, in sequence, a connecting electrode layer which is conductive, a lower electrode layer and a variable resistance layer which are made of a non-noble metal nitride and are conductive, an upper electrode layer made of noble metal, and a mask layer; forming the mask layer, into a predetermined shape; forming the upper electrode layer, the variable resistance layer, and the lower electrode layer into the predetermined shape by etching using the mask layer as a mask; and removing, simultaneously, the mask and a region of the connecting electrode layer that has been exposed by the etching.
摘要:
A variable resistance element including: a first electrode; a second electrode; and a variable resistance layer having a resistance value which reversibly changes according to electrical signals applied, wherein the variable resistance layer includes a first variable resistance layer comprising a first oxygen-deficient transition metal oxide, and a second variable resistance layer comprising a second transition metal oxide having a degree of oxygen deficiency lower than a degree of oxygen deficiency of the first oxygen-deficient transition metal oxide, the second electrode has a single needle-shaped part at an interface with the second variable resistance layer, and the second variable resistance layer is interposed between the first variable resistance layer and the second electrode, is in contact with the first variable resistance layer and the second electrode, and covers the single needle-shaped part.