摘要:
A Megasonic cleaning apparatus having at least one reflector (e.g., a parabolic or paraboloid reflector) positioned to collect otherwise wasted cleaning energy and redirect that energy to one or a plurality of positions on a wafer's edge is provided. A first embodiment comprises a complex parabolic reflector which has a width greater than that of the wafer and a preferred length approximately equal to the diameter of the wafer, and which is shaped to provide focal points which vary along the length of the parabolic reflector, such that energy striking the reflector at different points along the reflector's length is directed to a plurality of different points along the wafer's edge. A second embodiment comprises a simple parabolic reflector having a width greater than that of the wafer and a preferred length less than the diameter of the wafer, and which is provided to focus at a cord along the wafer's surface, effectively focusing cleaning energy on two points along the wafer's edge at any given time. Yet another embodiment of the invention comprises a paraboloid reflector having a width greater than that of the wafer and a preferred length which is substantially less than the diameter of the wafer and which is shaped to focus all collected energy to a single point on the wafer's edge. Multiple such reflectors may be positioned in the cleaning tank to optimize energy usage and wafer cleaning.
摘要:
A sonic tank for cleaning substrates is provided. The tank has two or more upwardly angled walls. Arrays of one or more transducers are positioned along at least two of the two or more angled walls. The transducer arrays are alternately energized maintaining nearly 100% substrate surface cleaning at any given time, and 50% duty cycle (or less) for each transducer array. The substrate supports are positioned such that nearly every point along the substrate's surface is contacted by energy from at least one transducer, and transducer opposing walls are positioned to avoid interfering reflections therefrom.
摘要:
A method and apparatus for cleaning wafer edges is provided. The inventive wafer cleaner employs a transducer equal in length to the diameter of a wafer to be cleaned, and positioned to direct sonic energy in line with the wafer's edge. Supporting and rotating mechanisms are positioned along the wafer's edge, outside of the transducer's high energy field, and preferably such that approximately 50 percent of the wafer is positioned between the wafer supports and the transducer. Therefore, minimal sonic energy is blocked from reaching the wafer's surface. The transducer dimensions relative to the wafer, and the positioning of the wafer supports relative to the transducer enable the system to achieve an approximately 50 percent edge cleaning duty cycle as the wafer is rotated.
摘要:
Embodiments of the invention provide a method for forming a solar cell including forming a layer comprising alumina on a substrate and forming a transparent conductive layer on the layer comprising alumina. The method may also include forming a transparent conductive seed layer on the layer comprising alumina and forming a transparent conductive bulk layer on the transparent conductive seed layer. Embodiments of the invention also include photovoltaic devices having a substrate, a layer comprising alumina adjacent to the substrate, a zinc oxide-containing transparent conductive seed layer adjacent to the layer comprising alumina, and a zinc oxide-containing transparent conductive bulk layer adjacent the zinc oxide-containing transparent conductive seed layer.
摘要:
The chemical-mechanical polishing (CMP) of products in general and semiconductor wafers in particular is controlled by monitoring the acoustic emissions generated during CMP. A signal is generated with the acoustic emissions which is reflective of the energy of the acoustic emissions. The signals are monitored and the CMP process is adjusted in response to a change in the acoustic emission energy. Changes in the acoustic emission energy signal can be used to determine the end-point for CMP, particularly when fabricating semiconductor wafers for planarizing/polishing a given surface thereof. Long-term changes in the acoustic emission energy signals resulting from process changes including, for example, wear of the polishing pad, can also be detected with the acoustic emission energy signals so that desired or necessary process adjustments, such as a reconditioning of the polishing pad, for example, can be effected or the process can be stopped or an alarm signal can be generated when unacceptable process abnormalities occur.
摘要:
A chemical mechanical polishing apparatus includes a platen to hold a polishing pad, a carrier to hold a substrate against a polishing surface of the polishing pad during a polishing process, and a temperature control system including a source of a fluid medium and one or more openings positioned over the platen and separated from the polishing pad and configured for the fluid medium to flow onto the polishing pad to heat or cool the polishing pad.
摘要:
Embodiments of the invention provide methods of applying a liquid to a backside of a substrate to bring the substrate to the temperature of the liquid. By controlling the temperature of the substrate the temperature of the semiconductor processing liquid may be maintained at a particular temperature or a type of reaction occurring in the semiconductor processing liquid may be enhanced or maintained, such as in reactions where relatively small amounts of liquid are used or expensive chemicals are used.
摘要:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface. The first barrier includes a solid first body having a first flat bottom surface and having a first leading surface configured to contact the used polishing liquid.
摘要:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface.