Abstract:
In embodiments, three magnetic field sensing elements are arranged equidistantly from each other to define a plane and a central axis perpendicular to the plane. The magnetic field sensing elements are configured to generate a respective output signal representing proximity of a magnetic target that is proximate to the central axis and capable of moving relative to the central axis. A processor circuit is coupled to receive output signals from each of the sensors and configured to calculate a position of the magnetic target relative to the plane.
Abstract:
A system includes a magnetic target and a magnetic field sensor. The magnetic field sensor comprises an output node; a circuit to detect a magnetic field produced by the magnetic target; and a processor. The processor may be configured to transmit a signal onto the output node representing the detected magnetic field; detect whether the transmitted signal is interrupted by an external source; and, if the signal is interrupted, initiate a self-test of the apparatus. Corresponding methods and apparatuses are also disclosed.
Abstract:
A magnetoresistance element has a pinning arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
Abstract:
Novel anisotropic magneto-resistive (AMR) sensor architectures and techniques for fabricating same are described. In some embodiments, AMR sensors having barber pole structures disposed below corresponding AMR sensing elements are provided. AMR sensors having segmented AMR sensing elements are also described. Fabrication techniques that can be used to fabricate such sensors are also described. Fabrication techniques are also described that can reduce the risk of contamination during AMR sensor fabrication.
Abstract:
Systems and methods described herein are directed towards integrating a shield layer into a current sensor to shield a magnetic field sensing element and associated circuitry in the current sensor from electrical, voltage, or electrical transient noise. In an embodiment, a shield layer may be disposed along at least one surface of a die supporting a magnetic field sensing element. The shield layer may be disposed in various arrangements to shunt noise caused by a parasitic coupling between the magnetic field sensing element and the current carrying conductor away from the magnetic field sensing element.
Abstract:
Methods and apparatus for receiving a return laser pulse at a detector system having pixels in a pixel array and analyzing a response of the pixels in the pixel array including comparing the response to at least one threshold corresponding to decay of photonic energy of the laser pulse over distance and target reflectivity, wherein the at least one threshold comprises a first threshold corresponding to a low trigger for a pulse generated by a first type of laser and a second threshold corresponding to a high trigger for the pulse generated by the first type of laser. Embodiments can further include generating an alert signal based on the response of the pixels in the pixel array.
Abstract:
A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
Abstract:
Lidar transmission optics and systems project more laser pulse energy per pixel instantaneous field-of-view (IFOV) to a portion of a sensor field of view (FOV), e.g., a portion that would be expected to have both close and distant objects of interest, and proportionally less pulse energy per pixel IFOV to other portions of the sensor FOV, e.g., those that would be expected to have or see only close objects of interest. Optics such as diffractive optical elements (DOEs), gradient-index (GRIN) lenses, and/or compound lens systems can be used for producing desired irradiance distributions having multiple parts or regions. The optics and systems improve range performance by providing for more efficient use of the total available laser pulse energy than transmit optics that project uniform pulse energy per pixel IFOV across the sensor FOV.
Abstract:
Methods and apparatus for receiving a return laser pulse at a detector system having pixels in a pixel array and analyzing a response of the pixels in the pixel array including comparing the response to at least one threshold corresponding to decay of photonic energy of the laser pulse over distance and target reflectivity, wherein the at least one threshold comprises a first threshold corresponding to a low trigger for a pulse generated by a first type of laser and a second threshold corresponding to a high trigger for the pulse generated by the first type of laser. Embodiments can further include generating an alert signal based on the response of the pixels in the pixel array.
Abstract:
Methods and apparatus for a controlling a stimulus source to direct photons to a pixel in a pixel array contained in a detector system, analyzing a response of the pixel in the pixel array; and generating an alert based on the response of the pixel in the pixel array. Example stimulus sources include a conductive trace, a PN junction, and a current source.