Abstract:
An inertial sensor includes driving piezoelectric transducers for enabling an oscillation of a resonator, sensing piezoelectric transducers for enabling a detection of a movement of the inertial sensor, and piezoelectric compensating elements substantially equidistantly among the driving and the sensing piezoelectric transducers, wherein the compensating elements and the resonator form corresponding capacitors having capacitive gaps, and wherein, during the oscillation of the resonator, changes in electrostatic charges stored in the capacitors are measured with the compensating elements and are modified so as to modify the oscillation of the resonator.
Abstract:
Systems and methods for sensing angular motion using a microelectromechanical system (MEMS) gyroscope are described. These systems and methods may be useful for sensing angular motion in the presence of low-frequency noise, which may be noise below 1 KHz. In a system for sensing angular motion, low-frequency noise may give rise to duty cycle jitter, which may affect the demodulation of the sense signal and cause errors in angular motion estimates. The systems and methods described herein address this problem by relying on double-edge phase detection technique that involves sensing when the rising and falling edges of the resonator signal deviate from their expected values in the idealized 50% duty cycle scenario. To prevent the formation of ripples in the double-edge phase detection that may otherwise affect the demodulation of the sense signal, a switch may be used. The switch may be maintained in a non-conductive state when a ripple is received.
Abstract:
Sense amplifiers for use in connection with microelectromechanical system (MEMS) gyroscopes are described. The sense amplifiers may be configured to change the level of a gyroscope signal, i.e., the signal produced by a gyroscope in response to angular motion, to a level suitable for processing circuitry arranged to infer the angular velocity. The sense amplifier may further provide a DC discharge path allowing for discharge of the DC component of the output signal. The DC discharge path may include an anti-aliasing filter and a resistive circuit. The anti-aliasing filter may filter the output signal to maintain the resistive circuit in the linear region. The anti-aliasing filter may be designed with a frequency response such that discrete frequency sub-bands are blocked or at least attenuated. The frequency sub-bands may be tuned to substantially match the gyroscope's resonant frequency and its integer multiples.
Abstract:
Systems and methods for sensing angular motion using a microelectromechanical system (MEMS) gyroscope are described. These systems and methods may be useful for sensing angular motion in the presence of low-frequency noise, which may be noise below 1 KHz. In a system for sensing angular motion, low-frequency noise may give rise to duty cycle jitter, which may affect the demodulation of the sense signal and cause errors in angular motion estimates. The systems and methods described herein address this problem by relying on double-edge phase detection technique that involves sensing when the rising and falling edges of the resonator signal deviate from their expected values in the idealized 50% duty cycle scenario. To prevent the formation of ripples in the double-edge phase detection that may otherwise affect the demodulation of the sense signal, a switch may be used. The switch may be maintained in a non-conductive state when a ripple is received.
Abstract:
Various embodiments mitigate the risk of frequency-lock in systems having multiple resonators by dynamically changing the frequency at which at least one of the resonators is driven. More particularly, the drive frequency of at least one of the resonators is changed often enough that the multiple resonators do not have time to achieve frequency lock. Changes in the oscillation of the resonators may be analyzed to determine, for example, acceleration of such systems. Some embodiments implement self-test by assessing expected performance of a system with toggling drive frequencies. More particularly, some embodiments implement self-test by artificially inducing displacement of a movable member of a system.
Abstract:
An accelerometer has a movable mass suspended above a substrate, and a variable acceleration capacitor supported by the substrate. The movable mass has a mass anchor securing the mass to the substrate, while the acceleration capacitor has both a stationary finger extending from the substrate, and a movable finger extending from the movable mass. The accelerometer also has a variable stress capacitor, which also includes the stress finger, for determining movement of the mass anchor relative to the substrate.
Abstract:
Error sources related to aerodynamics of an inertial sensor resonator are detected by modulating the distance between the resonator and the underlying substrate and sensing modulated error signals in the accelerometer that are induced by such modulation. Compensating signals may be provided to substantially cancel errors caused by such error sources.
Abstract:
Detecting and/or mitigating the presence of particle contaminants in a MEMS device involves converting benign areas in which particles might become trapped undetectably by electric fields during test to field-free regions by extending otherwise non-functional conductive shield and gate layers and placing the same electrical potential on the conductive shield and gate layers. Particle contaminants can then be moved into detection locations remote from the potential trap areas and having particle detection structures by providing some mechanical disturbance.
Abstract:
Microelectromechanical systems (MEMS) capacitive strain gauge sensors are described. The strain gauge sensors include a lever configured to mechanically amplify a strain response. In some embodiments, an anchored beam is coupled to the effort arm of the lever and a movable sensing finger to the resistance arm. The effort arm may be shorter than the resistance arm, thus providing a mechanical amplification.
Abstract:
Techniques for self-testing of microelectromechanical systems (MEMS) inertial sensors are described. Some techniques involve testing inertial sensor characteristics such as an accelerometer's sensitivity to acceleration and a gyroscope's sensitivity to angular motion. The tests may be performed by providing a test signal, which simulates a stimulus such as an acceleration or angular rate, to a MEMS inertial sensor and examining the sensor's output. The efficacy of such self-tests may be impaired by spurious signals, which may be present in the sensor's environment and may influence the sensor's output. Accordingly, the self-testing techniques described herein involve detecting the presence of any such spurious signals and discarding self-test results when their presence is detected. In some embodiments, the presence of spurious signals may be detected using a signal obtained by mixing the response of the MEMS inertial sensor with a reference signal substantially in quadrature with the test signal.