摘要:
A microelectromechanical systems (MEMS) accelerometer is described. The MEMS accelerometer may comprise a proof mass configured to sense accelerations in a direction parallel the plane of the proof mass, and a plurality of compensation structures. The proof mass may be connected to one or more anchors through springs. The compensation structures may be coupled to the substrate of the MEMS accelerometer through a rigid connection to respective anchors. A compensation structure may comprise at least one compensation electrode forming one or more lateral compensation capacitors. The compensation capacitor(s) may be configured to sense displacement of the anchor to which the compensation structures is connected.
摘要:
Various embodiments include feedback circuits for tuning the drive modes of a shell-type gyroscope, while other embodiments include separate circuits for tuning the sense mode of a shell-type gyroscope to reduce or avoid quadrature errors. Still other embodiments include circuits to excite the sense modes (i.e., the out-of-plane modes) of a gyroscope without requiring the application of a rotation to the gyroscope, to ensure that the sense modes are aligned with the sense electrodes.
摘要:
An inertial sensor includes driving piezoelectric transducers for enabling an oscillation of a resonator, sensing piezoelectric transducers for enabling a detection of a movement of the inertial sensor, and piezoelectric compensating elements substantially equidistantly among the driving and the sensing piezoelectric transducers, wherein the compensating elements and the resonator form corresponding capacitors having capacitive gaps, and wherein, during the oscillation of the resonator, changes in electrostatic charges stored in the capacitors are measured with the compensating elements and are modified so as to modify the oscillation of the resonator.
摘要:
Techniques for self-testing of microelectromechanical systems (MEMS) inertial sensors are described. Some techniques involve testing inertial sensor characteristics such as an accelerometer's sensitivity to acceleration and a gyroscope's sensitivity to angular motion. The tests may be performed by providing a test signal, which simulates a stimulus such as an acceleration or angular rate, to a MEMS inertial sensor and examining the sensor's output. The efficacy of such self-tests may be impaired by spurious signals, which may be present in the sensor's environment and may influence the sensor's output. Accordingly, the self-testing techniques described herein involve detecting the presence of any such spurious signals and discarding self-test results when their presence is detected. In some embodiments, the presence of spurious signals may be detected using a signal obtained by mixing the response of the MEMS inertial sensor with a reference signal substantially in quadrature with the test signal.
摘要:
A microelectromechanical system (MEMS) accelerometer is described. The MEMS accelerometer is arranged to limit distortions in the detection signal caused by displacement of the anchor(s) connecting the MEMS accelerometer to the underlying substrate. The MEMS accelerometer may include masses arranged to move in opposite directions in response to an acceleration of the MEMS accelerometer, and to move in the same direction in response to displacement of the anchor(s). The masses may, for example, be hingedly coupled to a beam in a teeter-totter configuration. Motion of the masses in response to acceleration and anchor displacement may be detected using capacitive sensors.
摘要:
An accelerometer has a movable mass suspended above a substrate, and a variable acceleration capacitor supported by the substrate. The movable mass has a mass anchor securing the mass to the substrate, while the acceleration capacitor has both a stationary finger extending from the substrate, and a movable finger extending from the movable mass. The accelerometer also has a variable stress capacitor, which also includes the stress finger, for determining movement of the mass anchor relative to the substrate.
摘要:
Detecting and/or mitigating the presence of particle contaminants in a MEMS device involves including MEMS structures that in normal operation are robust against the presence of particles but which can be made sensitive to that presence during a test mode prior to use, e.g., by switching the impedance of sensitive structures between an exceptionally sensitive condition during test and a normal sensitivity during operation; surrounding sensitive nodes with guard elements that are at the same potential as those nodes during operation, thereby offering protection against bridging particles, but are at a very different potential during test and reveal the particles by their resulting leakage currents; extending the sensitive nodes to interdigitate with or otherwise extend adjacent to the guard structures, which neither contribute to nor detract from the device operation but cover otherwise open areas with detection means during test; and/or converting benign areas in which particles might become trapped undetectably by electric fields during test to field-free regions by extending otherwise non-functional conductive layers so that the particles can then be moved into detection locations by providing some mechanical disturbance.
摘要:
Microelectromechanical systems (MEMS) capacitive strain gauge sensors are described. The strain gauge sensors include a lever configured to mechanically amplify a strain response. In some embodiments, an anchored beam is coupled to the effort arm of the lever and a movable sensing finger to the resistance arm. The effort arm may be shorter than the resistance arm, thus providing a mechanical amplification.
摘要:
A microelectromechanical systems (MEMS) accelerometer is described. The MEMS accelerometer may comprise a proof mass configured to sense accelerations in a direction parallel the plane of the proof mass, and a plurality of compensation structures. The proof mass may be connected to one or more anchors through springs. The compensation structures may be coupled to the substrate of the MEMS accelerometer through a rigid connection to respective anchors. A compensation structure may comprise at least one compensation electrode forming one or more lateral compensation capacitors. The compensation capacitor(s) may be configured to sense displacement of the anchor to which the compensation structures is connected.
摘要:
Error sources related to aerodynamics of an inertial sensor resonator are detected by modulating the distance between the resonator and the underlying substrate and sensing modulated error signals in the accelerometer that are induced by such modulation. Compensating signals may be provided to substantially cancel errors caused by such error sources.