Abstract:
In contrast to some existing techniques, a calibration technique compares multiple outputs which may be, for example, successive or different outputs from the digital-to-analog converter (DAC) in an analog environment and determines differences between at least two outputs in an analog environment. A feedback signal is provided in the digital environment to provide an internal or self-calibration regime. The digital feedback signal is provided to a digital signal processing (DSP) component of the calibration circuitry which uses the feedback signal to determine appropriate input codes to provide to the DAC. The same DAC can be used for both signal generation and feedback DAC purposes, and this provides a self-calibration of the DAC performance which is typically related to the integral non-linearity (INL) characteristics of the DAC transfer function.
Abstract:
The present disclosure relates to a digital-to-analog converter (DAC) which includes a resistor string and a transfer function modification circuit. The transfer function modification circuit may be a calibration circuit for calibrating the DAC, The calibration circuit may include a plurality of current sources, which may be current DACs. Each of the current DACS inject current into, or drain current from, a respective node of the resistor string, in order to correct for voltage errors. The injected currents may be positive or negative, depending on the voltage error. The current DACs are controlled by trim codes, which are set dependent on the measured or simulated voltage errors for a given resistor string.
Abstract:
A multiple impedance string, multiple output digital-to-analog converter (DAC) circuit that can include a shared coarse resolution DAC, two first fine resolution DACs to receive outputs of the MSB DAC, and a multiplexer to multiplex outputs of the first and second fine resolution DACs to output terminals. The multiplexer can be configured to interchange coupling of the outputs of the first and second fine resolution DACs using one or more MSBs.
Abstract:
A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N−1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2π radians or a multiple thereof, where N is greater than 1.
Abstract:
A buffer is provided where a part of the buffer is implemented in switched capacitor or other analog discrete time processing circuitry and a dynamic response characteristic, such as an effective gain or charge transfer coefficient between the input stage and an output stage is digitally controllable. This means that the buffer can be driven as if it was a system controlled by, for example a three (3) term controller, giving rise to greater, digital flexibility in tailoring the buffer's transient response.
Abstract:
Digital to analog converters (DAC) are used to convert digital signals to analog values. The digital system providing data to the analog converter may be highly tasked. A DAC is provided with some in built logic to assist in reducing the load on the devices driving the DAC. The DAC may include a library of functions that it can apply to the input words to modify transitions in the analog output words. The DAC may further include a health checking system for monitoring the digital words being supplied to the DAC and raising a concern, and taking action if required, if the sequence of words is unlikely to be correct or beyond the target operating range.
Abstract:
Many electronic circuits rely on the ratio of one component to other components being well defined. Current flow in component can warm the component causing its electrical properties to change, for example the resistance of a resistor may increase due to self-heating as a result of current flow. The present disclosure provides a way to reduce temperature variation between components so as to reduce electrical mismatch between them or the consequences of such mismatch. This is important as even a change of resistance of, for example, 20-50 ppm in a resistor can result in non-linearity exceeding the least significant bit value of a 16 bit digital to analog converter.
Abstract:
The present application relates generally to programmable impedances and employs an auxiliary impedance in parallel to a primary programmable impedance to augment the performance of the primary programmable impedance at lower impedance values.
Abstract:
A multi-string DAC is described and comprises at least two DAC stages. Each DAC stage comprises a string of impedance elements and a switching network. In one configuration, the DAC comprises a first and second switching network, the second switching network providing multiple switched paths which compensate for impedance effects of the second string and provides multiple state changes at the output node of the DAC.