Abstract:
A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
Abstract:
During polishing of a stack of adjacent layers, a plurality of instances of a profile control algorithm are executed on a controller with different instances having different values for a control parameter. A first instance receives a sequence of characterizing values from an in-situ monitoring system during an initial time period to control a polishing parameter, and a second instance receives the sequence of characterizing values during the initial time period and a subsequent time period to control the polishing parameter. Exposure of the underlying layer is detected based on the sequence of characterizing values from the in-situ monitoring system.
Abstract:
A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
Abstract:
During polishing of a substrate a first signal is received from a first in-situ monitoring system and a second signal is received from a second in-situ monitoring system. A clearance time at which a conductive layer is cleared and a top surface of an underlying dielectric layer of the substrate exposed and determine based on the first signal. An initial value of the second signal at the determined clearance time is determined. An offset is added to the initial value to generate a threshold value, and a polishing endpoint is triggered when the second signal crosses the threshold value.
Abstract:
In one aspect, a substrate chemical mechanical polishing (CMP) method for substrates is disclosed. The CMP method includes providing a substrate having a surface of silicon and copper such as through silicon via regions containing copper, and polishing the surface with a slurry containing very small silicon nanoparticles (e.g., having an average diameter less than 8 nanometers). CMP systems and slurries for CMP are provided, as are numerous other aspects.
Abstract:
A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
Abstract:
A method of chemical mechanical polishing includes bringing a substrate having a conductive layer disposed over a semiconductor wafer into contact with a polishing pad, generating relative motion between the substrate and the polishing pad, monitoring the substrate with an in-situ electromagnetic induction monitoring system as the conductive layer is polished to generate a sequence of signal values that depend on a thickness of the conductive layer, determining a sequence of thickness values for the conductive layer based on the sequence of signal values, and at least partially compensating for a contribution of conductivity of the semiconductor wafer to the signal values.
Abstract:
A method of compensating for a contribution of conductivity of the semiconductor wafer to a measured trace by an in-situ electromagnetic induction monitoring system includes storing or generating a modified reference trace. The modified reference trace represents measurements of a bare doped reference semiconductor wafer by an in-situ electromagnetic induction monitoring system as modified by a neutral network. The substrate is monitored with an in-situ electromagnetic induction monitoring system to generate a measured trace that depends on a thickness of the conductive layer, and at least a portion of the measured trace is applied to a neural network to generate a modified measured trace. An adjusted trace is generated, including subtracting the modified reference trace from the modified measured trace.
Abstract:
During polishing of a stack of adjacent conductive layers on a substrate, an in-situ eddy current monitoring system measures sequence of characterizing values. A polishing rate is repeatedly calculated from the sequence of characterizing values repeatedly, one or more adjustments for one or more polishing parameters are repeatedly calculated based on a current polishing rate using a first control algorithm for an initial time period, a change in the polishing rate that meets at least one first predetermined criterion that indicates exposure of the underlying conductive layer is detected, and one or more adjustments for one or more polishing parameters are calculated based on the polishing rate using a different second control algorithm for a subsequent time period after detecting the change in the polishing rate.
Abstract:
During polishing of a substrate a first signal is received from a first in-situ monitoring system and a second signal is received from a second in-situ monitoring system. A clearance time at which a conductive layer is cleared and a top surface of an underlying dielectric layer of the substrate exposed and determine based on the first signal. An initial value of the second signal at the determined clearance time is determined. An offset is added to the initial value to generate a threshold value, and a polishing endpoint is triggered when the second signal crosses the threshold value.