Abstract:
A notch finding apparatus includes a sensor to generate a signal that depends on an proportion of a sensing region of the sensor that is covered by a substrate, and a controller configured to cause an actuator to position a carrier head relative to the substrate with the sensing region of the sensor at an edge of the substrate, cause a motor to generate relative motion between the carrier head and the sensor such that the sensing region of the sensor scans along a circumference of the substrate, and detect an angular position of a notch in the edge of the substrate based on an initial signal from the sensor, including generating a second or higher order derivative signal from the initial signal.
Abstract:
A method of controlling polishing includes polishing a stack of adjacent conductive layers on a substrate, measuring with an in-situ eddy current monitoring system a sequence of characterizing values for the substrate during polishing, calculating a polishing rate from the sequence of characterizing values repeatedly during polishing, calculating one or more adjustments for one or more polishing parameters based on a current polishing rate using a first control algorithm for an initial time period, detecting a change in the polishing rate that indicates exposure of the underlying conductive layer, and calculating one or more adjustments for one or more polishing parameters based on the polishing rate using a different second control algorithm for a subsequent time period after detecting the change in the polishing rate.
Abstract:
A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
Abstract:
A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
Abstract:
Data received from an in-situ monitoring system includes, for each scan of a sensor, a plurality of measured signal values for a plurality of different locations on a layer. A thickness of a polishing pad is determined based on the data from the in-situ monitoring system. For each scan, a portion of the measured signal values are adjusted based on the thickness of the polishing pad. For each scan of the plurality of scans and each location of the plurality of different locations, a value is generated representing a thickness of the layer at the location. This includes processing the adjusted signal values using one or more processors configured by machine learning. A polishing endpoint is detected or a polishing parameter is modified based on the values representing the thicknesses at the plurality of different locations.
Abstract:
A method of controlling polishing includes sweeping a sensor of an in-situ monitoring system across a substrate as a layer of the substrate undergoes polishing, generating from the in-situ monitoring system a sequence of signal values that depend on a thickness of the layer, detecting from the sequence of signal values, a time that the sensor traverses a leading edge of the substrate or a retaining ring and a time that the sensor traverses a trailing edge of the substrate or retaining ring; and for each signal value of at least some of the sequence of signal values, determining a position on the substrate for the signal value based on the time that the sensor traverses the leading edge and the time that the sensor traverses a trailing edge.
Abstract:
An apparatus for chemical mechanical polishing includes a platen having a surface to support a polishing pad, a carrier head to hold a substrate against a polishing surface of the polishing pad, a pad conditioner including a conductive body to be pressed against the polishing surface, an in-situ polishing pad thickness monitoring system including a sensor disposed in the platen to generate a magnetic field that passes through the polishing pad, and a controller configured to receive a signal from the monitoring system and generate a measure of polishing pad thickness based on a portion of the signal corresponding to a time that the sensor is below the conductive body of the pad conditioner.
Abstract:
In one aspect, a method of polishing includes polishing a substrate, and receiving an identification of a selected spectral feature and a characteristic of the selected spectral feature to monitor during polishing. The method includes measuring a sequence of spectra of light reflected from the substrate while the substrate is being polished, where at least some of the spectra of the sequence differ due to material being removed during the polishing. The method of polishing includes determining a value of a characteristic of the selected spectral feature for each of the spectra in the sequence of spectra to generate a sequence of values for the characteristic, fitting a function to the sequence of values, and determining either a polishing endpoint or an adjustment for a polishing rate based on the function.
Abstract:
A method of generating reference spectra includes polishing a first substrate in a polishing apparatus, measuring a sequence of spectra from the first substrate during polishing with an in-situ optical monitoring system, for each spectrum in the sequence of spectra, determining a best matching reference spectrum from a first plurality of first reference spectra to generate a sequence of reference spectra, calculating a value of a metric of fit of the sequence of spectra to the sequence of reference spectra, comparing the value of the metric of fit to a threshold value and determining whether to generate a second library based on the comparison, and if the second library is determined to be generated, storing the sequence of spectra as a second plurality of reference spectra.
Abstract:
While a substrate is polished, it is also irradiated with light from a light source. A current spectrum of the light reflected from the surface of the substrate is measured. A selected peak, having a first parameter value, is identified in the current spectrum. A value of a second parameter associated with the first parameter is determined from a lookup table using a processor. Depending on the value of the second parameter, the polishing of the substrate is changed. An initial spectrum of light reflected from the substrate before the polishing of the substrate can be measured and a wavelength corresponding to a selected peak of the initial spectrum can be determined.