Abstract:
The disclosure describes devices, systems, and methods for integrating load locks into a factory interface footprint space. A factory interface for an electronic device manufacturing system can include an interior volume defined by a bottom, a top and a plurality of sides, a first load lock disposed within the interior volume of the factory interface, and a first factory interface robot disposed within the interior volume of the factory interface, wherein the first factory interface robot is configured to transfer substrates between a first set of substrate carriers and the first load lock.
Abstract:
Embodiments of the disclosure are directed to load lock chambers and methods of using load lock chambers. The load lock chambers include a middle section, an upper section connected to the middle section and a lower section connected to the middle section. A slit valve in a facet on the outside of the middle section provides an opening to access the middle volume from outside the load lock.
Abstract:
Methods and apparatus for processing a substrate are provided herein. In one implementation, the apparatus includes a load lock chamber coupled to a transfer chamber. The transfer chamber is coupled to a thermal process chamber and a substrate is transferred between each of the load lock chamber, the transfer chamber, and the thermal process chamber. In other implementations, a process platform having a load lock chamber, a transfer chamber, and a thermal process chamber is disclosed. Methods of measuring oxygen concentration in a load lock chamber via evacuation of a transfer chamber are also described herein.
Abstract:
Embodiments relate to methods and apparatus for batch processing of substrates during epitaxial film formation. In one example, a process chamber includes a chamber lid and substrate support. The chamber lid includes a centrally disposed gas inlet and a first gas deflector coupled to the chamber lid and adapted to direct the first process gas laterally across surfaces of a plurality of substrates. The lid also includes one or more gas outlets disposed radially outward of the centrally disposed gas inlet, and a plurality of lamps disposed between the centrally disposed gas inlet and the one or more gas outlets. The substrate support is rotatable and includes both a gas passage formed therein for introducing a second process gas to the internal volume of the process chamber and a second gas deflector adapted to direct the second process gas laterally across the surfaces of the plurality of substrates.
Abstract:
Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
Abstract:
Electronic device processing systems are described. The system includes a mainframe housing having a transfer chamber, a first facet, a second facet opposite the first facet, a third facet, and a fourth facet opposite the third facet, a first carousel assembly coupled to a first facet, a second carousel assembly coupled to the third facet, a first load lock coupled to the second facet, a second load lock coupled to the fourth facet, and a robot adapted to operate in the transfer chamber to exchange substrates from the first and second carousels. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
Abstract:
Devices, systems, and methods for integrating load locks into a factory interface footprint space. A factory interface for an electronic device manufacturing system can include an interior volume defined by a bottom, a top and a plurality of sides, a load lock disposed within the interior volume of the factory interface, and a factory interface robot disposed within the interior volume of the factory interface, wherein the factory interface robot is configured to transfer substrates between a set of substrate carriers and the load lock.
Abstract:
The disclosure describes devices, systems, and methods for integrating load locks into a factory interface footprint space. A factory interface for an electronic device manufacturing system can include an interior volume defined by a bottom, a top and a plurality of sides, a first load lock disposed within the interior volume of the factory interface, and a first factory interface robot disposed within the interior volume of the factory interface, wherein the first factory interface robot is configured to transfer substrates between a first set of substrate carriers and the first load lock.
Abstract:
Full wafer in-situ metrology chambers and methods of use are described. The metrology chambers include a substrate support and a sensor bar that are rotatable relative to each other. The sensor bar includes a plurality of sensors at different radii from a central axis.
Abstract:
Full wafer in-situ metrology chambers and methods of use are described. The metrology chambers include a substrate support and a sensor bar that are rotatable relative to each other. The sensor bar includes a plurality of sensors at different radii from a central axis.