摘要:
Disclosed is an output driver circuit capable of realizing reduction in power consumption, and/or enhancement in transmission waveform quality in addition to an increase in transmission speed. The output driver circuit is provided with, for example, a voltage-signal generation circuit block VSG_BK for driving positive negative output-nodes (TXP, TXN) by voltage, -pulse-signal generation circuits PGEN1, PGEN 2 for generating a pulse signal upon a transition of data input signals DIN_P, DIN_N, and current-signal generation circuit blocks ISG_BKp1, ISG_BKn1, for driving TXP, TXN by current for the duration of a pulse width of the pulse-signal. The current-signal generation circuit block executes high-speed charging of parasitic capacitors Cp1, Cp2, occurring to TXP, TXN, respectively, while executing charging of parasitic capacitors Cp1, Cp2, occurring to impedance Z0 respectively. VSG_BK decides a voltage level at TXP, TXN, in the stationary state, keeping TXP, TXN as terminal nodes at impedance Z0, respectively.
摘要:
A transmitter circuit in which a driver circuit includes MOS transistors for bias voltage application, in which a driving current flows, cascode-connected to MOS transistors for differential signal input controlled by a voltage value of transmitted data signals, controlled by a voltage value of a bias voltage, and driver circuits include MOS transistors for bias voltage application, in which a driving current flows, cascode-connected to MOS transistors for differential signal input that is controlled by a voltage value of signals obtained by the transmitted data signals, connected to a load portion, and controlled by a voltage value of a bias voltage.
摘要:
An optical communication device which can be operated at high speed is provided. For example, the optical communication device includes: a pre-amplifier circuit PREAMP1 amplifying a current signal Iin from a photodiode PD, and converting an amplified signal into a voltage signal; and an operating-point controller circuit VTCTL1 controlling an operation of the PREAMP1. The PREAMP1 includes a negative feedback path formed by a feedback resistance Rf1, and includes: a level-shift circuit LS1 level-shifting in accordance with an operating-point control signal Vcon; and an amplifier circuit AMP1 connected to a subsequent stage of the LS1 and performing an amplifying operation with a high gain. The VTCTL1 includes a replica circuit configured by the same circuit and circuit parameter as those of the AMP1 and electrically connected between the input and the output, and generates the Vcon so that an output DC level of this replica circuit is matched with an input DC level of the AMP1.
摘要:
There is provided a waveform equalization circuit with pulse width modulation that includes pulse-width adjust-level generation circuits PWCLC1a, PWCLC2a, for generating a pulse-width adjust-level VCNT on the basis of preceding input data units Din_P, Din_N, respectively, pulse-width adjustment circuits PWCC1a, PWCC2a, for adjusting a pulse-width according to VCNT, respectively, and a waveform shaping circuit WAC for shaping a waveform of an output signal from each of the pulse-width adjustment circuits. The pulse-width adjustment circuit has a driving power to be controlled according to a consecutive bits count of each of the preceding input data units, and varies transition time of each of output data units Do1_P, Do1_N, thereby adjusting the pulse width. With the use of such a waveform equalization scheme as above, it is possible to attain reduction in power consumption due to simplification in circuit configuration, and further, use of CMOS circuits will enable power consumption to be held back to a low level.
摘要:
A receiver circuit includes first and second constant current sources respectively connected to a pair of first and second receiving terminals to receive complementary current signals, a first NMOS transistor connected at a source thereof to the first receiving terminal and the first constant current source and connected at a drain thereof to a first power supply via a first output terminal and first load means, and a second NMOS transistor connected at a source thereof to the second receiving terminal and the second constant current source and connected at a drain thereof to the first power supply via a second output terminal and second load means.
摘要:
A pre-emphasis circuit which can improve a communication quality of a data transmission at low cost is provided. A current switch circuit, a current adder circuit, and transition detection circuits are provided in a transmitter of a data transmission system. The transition detection circuits detect transitions of transmission data signals which are a differential pair. The current switch circuit receives the transmission data signals, carries driving currents in accordance with the transmission data signals, and outputs output data signals which are a differential pair. The current adder circuit receives detection signals from the transition detection circuits, and adds driving currents in accordance with the detection signals to load resistors. By this means, output data signals in which the transitions are emphasized are inputted to a transmission line.
摘要:
A first current source generating a current I0+I when a control signal is in ‘H’ level and a current I0 when it is in ‘L’ level, a current mirror circuit transferring a current generated in the first current source and composed of first and second MOS transistors, and a second current source connected to the second transistor and generating I0+I are provided. Further, a node branched from a connection node between the second transistor and the second current source is formed, and a logic unit including a flip-flop circuit formed of a differential amplifier is driven through the node. The logic unit is in an active state when the control signal is in ‘H’ level and it is in an inactive state when the signal is in ‘L’ level. When the logic unit is in an active state, it processes a data input signal to generate data output signal.
摘要:
A clock data recovery circuit has a good jitter tolerance characteristic and a broad data recovery range in the event of a wander, that is, a good wander-tracking characteristic of a recovered clock signal. The clock data recovery circuit executes control to compare the position of the edge of data with the position of the edge of a data recovery clock signal (a recovered clock signal) and keeps the clock edge away from the data edge if a gap between the edges becomes smaller than a reference value. A cycle of a reference clock signal is divided into N portions to generate N clock signals (pl ) with phases different from each other in composition circuits. By executing control to turn on 2 of the N selector control signals supplied to each 2 adjacent pins of the N−1 selectors at the same time, the N−1 selectors are capable of generating a middle phase between first and second phases and, hence, generating one of N×2 phases from N input phases as the phase of the data recovery clock signal.
摘要:
A magnetic recording device capable of reducing the size of a writing circuit and the power consumption by readily adjusting the overshoot of the write current pulses is provided. Two or more transmission lines having different characteristic impedances are provided between an output driver having an impedance Zs and a magnetic head, the transmission lines are formed so that the characteristic impedances Z1, Zn−1, and Zn (n≧2) thereof on the output driver side are higher than those on the magnetic recording head side (Z1>Zn−1>Zn), and the impedance Zs of the output driver is equal to or higher than the characteristic impedance Z1 of the transmission line.
摘要翻译:提供了能够通过容易地调整写入电流脉冲的过冲来减小写入电路的尺寸和功耗的磁记录装置。 具有不同特性阻抗的两条或更多条传输线被提供在具有阻抗Z S s的输出驱动器和磁头之间,传输线形成为使得特性阻抗Z 1 SUB 输出驱动器侧的Z,N,N,N,N,N,N(n> = 2)高于磁记录头侧(Z 1 SUB>。
摘要:
A semiconductor memory has a memory cell matrix encompassing (a) device isolation films running along the column-direction, arranged alternately between the memory cell transistors aligned along the row-direction, (b) first conductive layers arranged along the row and column-directions, top surfaces of the first conductive layers lie at a lower level than top surfaces of the device isolation films, (c) an inter-electrode dielectric arranged both on the device isolation films and the first conductive layers so that the inter-electrode dielectric can be shared by the memory cell transistors belonging to different cell columns' relative dielectric constant of the inter-electrode dielectric is higher than relative dielectric constant of the device isolation films, and (d) a second conductive layer running along the row-direction, arranged on the inter-electrode dielectric. Here, upper corners of the device isolation films are chamfered.