Abstract:
The present invention relates to a process for the production of a zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, said process comprising (i) preparing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (ii) crystallizing the mixture obtained in (i) for obtaining a layered precursor of the MWW framework structure, (iii) calcining the layered precursor obtained in (ii) for obtaining the zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I) R1R2R3N (I) wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, and wherein the mixture prepared in (i) and crystallized in (ii) contains 35 wt.-% or less of H2O based on 100 wt.-% of YO2 contained in the mixture prepared in (i) and crystallized in (ii), as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process and to its use.
Abstract:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises (a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I): R1R2R3N, wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
Abstract:
Described is a preparation method for zeolite molecular sieves by means of solid-state reactions without the usage of organic templates. The method comprises the following steps: grinding and mixing the solid raw materials comprising the silicon source, the aluminum source and the alkali source, transferring the obtained mixture into an autoclave, conducting the crystallization for a period of 5 hours-20 days at a temperature of 50-200° C. After filtering and drying the crystallized products, molecular sieves in a powder form can be obtained. The method provides different molecular sieves, including ZSM-5 zeolite, Beta zeolite, FAU zeolite, MOR zeolite, LTA zeolite, and GIS zeolite, with a high crystallinity and an adjustable Si/Al ratio within a certain range. The obtained products exhibit a high crystallinity and a high purity, and the method does not require the use of organic templates and solvents, which avoids unnecessary consumptions during the production, simplifies the synthetic process, and also increases the yield from the autoclave reactor.
Abstract:
Described is a preparation method for zeolite molecular sieves by means of solid-state reactions without the usage of organic templates. The method comprises the following steps: grinding and mixing the solid raw materials comprising the silicon source, the aluminum source and the alkali source, transferring the obtained mixture into an autoclave, conducting the crystallization for a period of 5 hours-20 days at a temperature of 50-200° C. After filtering and drying the crystallized products, molecular sieves in a powder form can be obtained. The method provides different molecular sieves, including ZSM-5 zeolite, Beta zeolite, FAU zeolite, MOR zeolite, LTA zeolite, and GIS zeolite, with a high crystallinity and an adjustable Si/Al ratio within a certain range. The obtained products exhibit a high crystallinity and a high purity, and the method does not require the use of organic templates and solvents, which avoids unnecessary consumptions during the production, simplifies the synthetic process, and also increases the yield from the autoclave reactor.
Abstract:
A process for preparing an oxidic material comprising a zeolitic material having framework type AEI and a framework structure comprising a tetravalent element Y, a trivalent element X, and O, the process comprising preparing a synthesis mixture comprising water, a source of Y, a source of X comprising sodium, an AEI framework structure directing agent, and a source of sodium other than the source of X; and heating the synthesis mixture obtained from (i) to a temperature in the range of from 100 to 180° C. and keeping the synthesis mixture under autogenous pres-sure at a temperature in this range for a time in the range of at least 6 h, obtaining the oxidic material comprising a zeolitic material having framework type AEI and a framework structure comprising a tetravalent element Y, a trivalent element X, and O, comprised in its mother liquor; wherein the AEI framework structure directing agent according to (i) comprises a N, N-diethyl-2,6-dimethylpiperidinium cation.
Abstract:
The present invention relates to a rare earth element containing zeolitic material having a framework structure selected from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GME, KFI, LEV, LTN, and SFW, including mixtures of two or more thereof, the framework structure of the zeolitic material comprising SiO2 and X2O3, wherein X stands for a trivalent element, wherein the zeolitic material displays an SiO2:X2O molar ratio in the range of from 2 to 20, and wherein the zeolitic material contains one or more rare earth elements as counter-ions at the ion exchange sites of the framework structure. Furthermore, the present invention relates to a process for the production of the inventive rare earth element containing zeolitic material as well as to the use of the inventive rare earth element containing zeolitic material.
Abstract:
Described herein is a process for producing a zeolitic material having an MWW framework structure containing YO2 and B2O3, in which Y stands for a tetravalent element. The process includes the steps of (i) preparing a mixture containing one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (ii) crystallizing the mixture obtained in (i) for obtaining a layered precursor of the MWW framework structure, and (iii) calcining the layered precursor obtained in (ii) for obtaining the zeolitic material having an MWW framework structure. Also disclosed herein are synthetic boron-containing zeolites obtain by the process and uses thereof.
Abstract:
The present invention relates to a process for the production of a zeolitic material having a BEA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture obtained in step (1); (3) subjecting the zeolitic material having a BEA-type framework structure obtained in step (2) to an ion-exchange procedure with Cu; and (4) subjecting the Cu ion-exchanged zeolitic material obtained in step (3) to an ion-exchange procedure with Fe; wherein Y is a tetravalent element, and X is a trivalent element, wherein the mixture provided in step (1) and crystallized in step (2) further comprises seed crystals comprising one or more zeolitic materials having a BEA-type framework structure, and wherein the mixture provided in step (1) and crystallized in step (2) does not contain an organotemplate as a structure-directing agent, as well as to the zeolitic material having a BEA framework structure per se, and to its use, in particular in a method for the treatment of NOx by selective catalytic reduction (SCR).
Abstract:
The present invention relates to a method for the preparation of a treated zeolitic material having a BEA framework structure including the steps of: (i) providing a zeolitic material having a BEA framework structure, wherein the BEA framework structure includes YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, and wherein the zeolitic material having a BEA framework structure is obtainable and/or obtained from an organotemplate-free synthetic process; (ii) calcining the zeolitic material provided in step (i) at a temperature of 650° C. or more; and (iii) treating the calcined zeolitic material obtained from step (ii) with an aqueous solution having a pH of 5 or less, as well as to zeolitic materials per se preferably obtainable according to the inventive method and to their use, and to a process for converting oxygenates to olefins employing the inventive zeolitic materials.
Abstract:
Described is a process for the production of a pillared silicate. The process comprises (i) providing a layered silicate; (ii) interlayer expanding the layered silicate provided in step (i) comprising a step of treating the layered silicate with one or more swelling agents; (iii) treating the interlayer expanded silicate obtained in step (ii) with one or more hydrolyzable silicon containing compounds; (iv) treating the interlayer expanded compound obtained in step (iii) with an aqueous solution to obtain a pillared silicate; (v) removing at least a portion of the one or more swelling agents from the pillared silicate obtained in step (iv); and (vi) impregnating the pillared silicate obtained in step (v) with one or more elements selected from the group consisting of Fe, Ru, Ir, and combinations of two or more thereof. Also described is a pillared silicate optionally obtainable from said process and its use, in particular, in a process for the production of one or more olefins according to the invention.