RADIATION BEAM POSITIONING
    11.
    发明申请

    公开(公告)号:US20180200535A1

    公开(公告)日:2018-07-19

    申请号:US15322576

    申请日:2014-07-03

    Applicant: Brainlab AG

    Abstract: A data processing method and device for correlating the position of a radiation beam with the position of a target to be irradiated and contained in a structure underlying a repetitive motion comprising a plurality of successive motion cycles, the method/device comprising/performing the following steps which are constituted to be executed by a computer: a) acquiring first external position data, second external position data and third external position data describing the position of at least one external feature of said structure, for one or more sections of at least one first motion cycle occurring during a first period of time, for one or more sections of at least one second motion cycle occurring during a second period of time, and for one or more sections of at least one third motion cycle occurring during said second period of time, respectively; b) acquiring first target position data and second target position data describing the position of said target for at least one of said sections of said at least one first motion cycle, and for said sections of said at least one second motion cycle, respectively; c) determining, based on said first external position data and said first target position data, correlation model data describing a positional correlation of said external position and said target position; d) determining, based on said correlation model data and said second external position data, second predicted target position data describing a predicted position of said target for one or more sections of said at least one second motion cycle; e) determining, based on said second target position data and said second predicted target position data, primary verification data describing whether the position of said target for said sections of said at least one second motion cycles is different from said predicted position; f) acquiring, in case said primary verification data indicates that the position of said target is not different from the predicted position of said target, auxiliary second target position data and auxiliary third target position data describing the position of said target for one or more sections of said at least one second motion cycle, and of said at least one third motion cycle, respectively; g) determining, based on said first and/or said second external position data, said auxiliary second target position data and said third external position data, third predicted target position data describing a predicted position of said target for said sections of said at least one third motion cycle; h) determining, based on said auxiliary third target position data and said third predicted target position data, secondary verification data describing whether the position of said target for said sections of said at least one third motion cycle is different from said predicted position.

    Determination of dynamic DRRs
    16.
    发明授权

    公开(公告)号:US11663755B2

    公开(公告)日:2023-05-30

    申请号:US17573032

    申请日:2022-01-11

    Applicant: Brainlab AG

    Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements representing the secondary anatomical elements; acquiring at least one trajectory, referred to as primary trajectory, based on the 4D-CT, the at least one primary trajectory describing a path of the at least one first image element as a function of time; acquiring trajectories of the second image elements, referred to as secondary trajectories, based on the 4D-CT; for the image elements of the undynamic CT, determining trajectory similarity values based on the at least one primary trajectory and the secondary trajectories, the trajectory similarity values respectively describing a measure of similarity between a respective one of the secondary trajectories and the at least one primary trajectory; determining the dynamic DRR by using the determined trajectory similarity values, and, in case the planning CT is acquired independently from the 4D-CT, further using a transformation referred to as planning transformation from the undynamic CT to the planning CT, at least a part of image values of image elements of the dynamic DRR being determined by using the trajectory similarity values.

    Deep inspiration breath-hold setup using x-ray imaging

    公开(公告)号:US11443441B2

    公开(公告)日:2022-09-13

    申请号:US16476941

    申请日:2017-02-24

    Applicant: Brainlab AG

    Abstract: A computer-implemented medical data processing method for determining a difference in position of an imaged anatomical body part of a patient, the method comprising executing, on at least one processor of at least one computer, steps of: acquiring, at the at least one processor, first patient image data describing a digital image of a first anatomical body part during a first phase of inspiration and the position of the first anatomical body part during the first phase of inspiration in a first reference system associated with the first image data; acquiring, at the at least one processor, second patient image data different from the first patient image data and describing a digital image of the first anatomical body part during a second phase of inspiration and the position of the first anatomical body part during the second phase of inspiration in a second reference system associated with the second image data; acquiring, at the at least one processor, position transformation data describing a transformation between the first reference system and the second reference system; and determining, by the at least one processor and based on the first patient image data and the second patient image data and the position transformation data, position difference data describing a relative position between the position of the first anatomical body part during the first phase of inspiration and the position of the first anatomical body part during the second phase of inspiration.

    Sorting the sequential arrangement of radiation treatment beams regarding well-distributed unobstructed lines of sight

    公开(公告)号:US10780297B2

    公开(公告)日:2020-09-22

    申请号:US15564600

    申请日:2017-02-10

    Applicant: Brainlab AG

    Abstract: Disclosed is a method for determining a positional pattern of an irradiation unit for irradiating a patient with treatment radiation. Optimal order data describing an order of the irradiation unit positions for which the statistical value is optimal is determined. The optimal order data is determined based on irradiation unit position data describing irradiation unit positions of the irradiation unit for which the imaging device has a free viewing direction onto the position of the patient, position orders data describing all possible orders of the irradiation unit positions for which the imaging device has a free viewing direction onto the position of the patient, and intersection angle data describing a statistical quantity of the intersection angles between free viewing directions of the imaging unit for irradiation unit positions which are immediately subsequent in the order described by the position orders data.

    CBCT and X-ray combined setup with X-ray verification of patient positioning

    公开(公告)号:US10391334B2

    公开(公告)日:2019-08-27

    申请号:US15818243

    申请日:2017-11-20

    Applicant: Brainlab AG

    Abstract: The disclosure is directed to a radiotherapy system having a treatment device for treating a treatment body part of a patient with a treatment beam arrangement. The treatment device is included with a couch for placing the patient and includes a medical imaging devices for outputting three-dimensional cone-beam computed tomography images to a computer, and a medical imaging x-ray device for generating at least one x-ray image, if the patient is placed on the couch for treatment, and for outputting at least one x-ray image to the computer. The system will output movement control data to control the relative position of the treatment body part relative to the treatment beam if it is determined there is the offset between the position of the treatment body part relative to the bony structure as described by the image data and the position of the treatment body part relative to a bony structure.

    Radiation beam positioning
    20.
    发明授权

    公开(公告)号:US10272266B2

    公开(公告)日:2019-04-30

    申请号:US15322576

    申请日:2014-07-03

    Applicant: Brainlab AG

    Abstract: The present invention relates to correlating a position of a radiation beam with a position of a target to be irradiated which is contained in a structure having a repetitive motion comprising a plurality of successive motion cycles. External position data is acquired, which describes a position the structure during different motion cycles and/or time periods. Target data is acquired, which describe a position of the target during the motion cycles and/or time periods. A correlation model is generated, which correlates the external position and the target position. A predicted target position during a motion cycle is determined based on the correlation model and acquire external position data. Primary verification data is determined that describes an difference between actual and predicted target position. When the prediction is accurate, a further prediction and verification of the target position in later motion cycles can be performed.

Patent Agency Ranking