Abstract:
In a mass spectrometer, ions from an ion source pass through an inlet aperture into a vacuum chamber for transmitting prior to mass analysis by the mass analyzer. The configuration of the inlet aperture forms a sonic orifice or sonic nozzle and with a predetermined vacuum chamber pressure, a supersonic free jet expansion is created in the vacuum chamber that entrains the ions within the barrel shock and Mach disc. Once formed, at least one ion guide with a predetermined cross-section to essentially radially confine the supersonic free jet expansion can focus the ions for transmission through the vacuum chamber. This effectively improves the ion transmission between the ion source and the mass analyzer.
Abstract:
In a mass spectrometer, ions from an ion source pass through an inlet aperture into a vacuum chamber for transmitting prior to mass analysis by the mass analyzer. The configuration of the inlet aperture forms a sonic orifice or sonic nozzle and with a predetermined vacuum chamber pressure, a supersonic free jet expansion is created in the vacuum chamber that entrains the ions within the barrel shock and Mach disc. Once formed, an ion guide with a predetermined cross-section to essentially radially confine the supersonic free jet expansion can focus the ions for transmission through the vacuum chamber. This effectively improves the ion transmission between the ion source and the mass analyzer.
Abstract:
An apparatus and method of analyzing ions is described in which a Differential Mobility Analyzer (DMA) is combined with an analysis device. The DMS can be operated in first and second modes of operation to produce a plurality of ions that are sampled and analyzed by the analysis device. In the first mode of operation the DMA is configured to enable ion mobility separation and the analysis device samples and analyzes ions having ion mobility in a certain range of ion mobility and in the second mode of operation the DMA is configured to disable ion mobility separation and the analysis device samples and analyzes ions without discrimination based on ion mobility.
Abstract:
A method and apparatus for acquiring time profiles of ion intensities of product ions in a mass spectrometer is provided. The mass spectrometer comprises an ion trap, a fragmentation module connected to the ion trap, and a mass analyzer module positioned to receive ions from the fragmentation module. Precursor ions, trapped in the ion trap, are ejected from the ion trap in order of m/z ratio. At least of some the precursor ions are fragmented at the fragmentation module to form product ions. Time profiles of ion intensities of the product ions are acquired, the product ions received at the mass analyzer module, by recording a plurality of product mass spectra for each respective precursor ion. The plurality of product mass spectra is processed, using the time profile intensities, to associate respective product ions with the respective precursor ions.
Abstract:
A method of analyzing ions is provided having a first ion guide with first and second ends and introducing a first group of ions and a second group of ions of opposite polarity into the first ion guide, and applying an RF voltage potential to the first ion guide for confining the first and second groups of ions radially within the first ion guide. A first trapping barrier is provided to the first end of the first ion guide for trapping the first group of ions within the first ion guide and a second trapping barrier is provided to the second end of the first ion guide for trapping the second group of ions within the first ion guide and an axial field is provided for pushing the first group of ions toward the first trapping barrier and pushing the second group of ions toward the second trapping barrier.
Abstract:
A method of and apparatus for analyzing a substance takes a stream of ions in said substance and supplies the ions to a collision cell including a quadrupole rod set for guiding the ions and a buffer gas. An RF voltage is applied to the quadrupole rod set to guide ions. An additional alternating current signal is applied to the quadrupole rod set at a frequency selected to cause resonance excitation of the secular frequency of a desired ion, whereby said desired ions are excited and undergo collision with the buffer gas causing fragmentation. The alternating current signal is then modulated, whereby periods in which said alternating current signal is applied alternate with periods in which said alternating signal is not applied. The ion spectrum after fragmentation is collected to generate one set of data for one spectrum, representative of the ion spectrum when the alternating current signal is applied, and another set of data for another spectrum, representative of the ion spectrum when the alternating current signal is not applied. These two spectra can then be subtracted.
Abstract:
There is provided a method of effecting mass analysis on an ion stream, the method comprising passing the ion stream through a first mass resolving spectrometer, to select parent ions having a first desired mass-to-charge ratio. The parent ions are then subject to collision-induced dissociation (CID) to generate product ions, and the product Ions and any remaining parent ions are trapped the CID and trapping can be carried out together in a linear ion trap. Periodically pulses of the trapped ions are released into a time of flight (TOF) instrument to determine the mass-to-charge ratio of the ions. The delay between the release of the pulses and the initiation of the push-pull pulses of the TOF instrument are adjusted to maximize the duty cycle efficiency and hence the sensitivity for a selected ion with a desired mass-to-charge ratio. This technique can be used to optimize the performance for a parent ion scan, and MRM scan or a neutral loss scan.
Abstract:
A mass spectrometer system in which ions are mass selected in an RF-only quadrupole at relatively high pressure (1 to 7 torr) using FNF or SWIFT, and are then fragmented in a following collision cell which is in the same vacuum chamber, thus reducing pumping needs. The fragments can be mass analyzed in any desired way, including by another RF-only quadrupole in the same vacuum chamber and also using FNF or SWIFT. Triple MS can be performed in the same way.
Abstract:
A system and method for performing MS/MS of everything are provided. Ionisable materials separated in order of molecular weight in a plurality of mass ranges are received at a mass spectrometer system in a given order in time, each mass range comprising a respective center mass value and a respective width. The ionisable materials are ionised in the given order that each of the plurality of mass ranges are received, to form respective precursor ions in a respective given mass range. The respective precursor ions are filtered via a mass filter module, a mass scan range of the mass filter module synchronized with the given order in which each of the plurality of mass ranges are received. The respective precursor ions are fragmented, via a fragmentation module, to form respective product ions. The respective product ions are analyzed in a mass spectrometer module to produce product ion spectra.
Abstract:
Various embodiments are described herein for an apparatus that can be used to interface a Differential Mobility Analyzer (DMA) with a Mass Spectrometer (MS). The apparatus includes first and second plates with first and second apertures respectively, and an interface region in between the first and second plates. During use, the first aperture receives mobility separated ions from the DMA, the interface region receives a gas flow to prevent gas outflow from the DMA toward the MS, and the first and second plates are configured to receive voltages to generate an electric field there between to guide the mobility separated ions from the first aperture to the second aperture, which then provides the mobility separated ions to the MS.