Abstract:
A heat-assisted magnetic recording head (HAMR) head includes a magnetic recording head including a recording pole for applying a magnetic recording field on a magnetic recording medium and a return pole magnetically connected to the recording pole to form a magnetic path, a light source for emitting light, and an optical transmission module including an photonic crystal waveguide disposed at a side of the magnetic recording head to guide light incident from the light source and a nano aperture for enhancing an optical field by varying an intensity distribution of the light guided through the photonic crystal waveguide.
Abstract:
An imprinting stamp and a nano-imprinting method using the imprinting stamp are provided. The imprinting stamp includes a first substrate; one or more field regions on the first substrate, the first substrate including nano-patterns; and a first dummy pattern region on the first substrate and adjacent to the field region, the dummy pattern region including first dummy patterns having greater dimensions than that of the nano-patterns, the first dummy patterns being a plurality of polygons, each of the polygons having a vertex pointing in a first direction proceeding from the field region toward the first dummy pattern region.
Abstract:
A stamp includes at least one protrusion on a protrusion pattern, and an end portion of the at least one protrusion may have a non-planarized surface. The end portion of the protrusion may have a concave structure, that is, the end portion includes a center region and an edge region, and the edge region is higher than the center region.
Abstract:
Organic-inorganic hybrid materials may be inorganic-based materials including more inorganic material than organic material. The organic-inorganic hybrid materials may include a backbone material, a release material, and a photoinitiator. The backbone material may be formed of an inorganic material, and at least one of the release material and the photoinitiator may be formed of an organic material. The backbone material may include a compound (e.g., an oxide or a nitride) containing at least one selected from the group consisting of Si, In, Zn, Al, and Ti. The release material may include at least one selected from the group consisting of alkyl (CnH2n+1), C, F, and Si.
Abstract translation:有机 - 无机混合材料可以是包括比有机材料更多的无机材料的无机基材料。 有机 - 无机混合材料可以包括骨架材料,剥离材料和光引发剂。 骨架材料可以由无机材料形成,并且剥离材料和光引发剂中的至少一种可以由有机材料形成。 骨架材料可以包括含有选自Si,In,Zn,Al和Ti中的至少一种的化合物(例如,氧化物或氮化物)。 剥离材料可以包括选自烷基(C n H 2n + 1),C,F和Si中的至少一种。
Abstract:
A cross point memory array includes a structure in which holes are formed in an insulating layer and a storage node is formed in each of the holes. The storage node may include a memory resistor and a switching structure. The master for an imprint process used to form the cross-point memory array includes various pattern shapes, and the method of manufacturing the master uses various etching methods.
Abstract:
A patterned medium and a method of manufacturing the same are provided. The patterned medium includes a data region having a plurality of recording dots arrayed along a plurality of tracks; and a non-data region comprising a part of the patterned medium other than the data region, the non-data region having a plurality of pattern marks. The method includes depositing an aluminum layer on a base substrate; depositing a photo-resist on the aluminum layer; forming a pattern on the photo-resist using a lithography process; forming a fine pattern by forming a plurality of cavities on a portion of the aluminum layer which is exposed through the photo-resist; removing the photo-resist; forming a mold pattern; imprinting the mold pattern on a media substrate to form cavities on the media substrate; and filling the cavities with a recording material.
Abstract:
A perpendicular magnetic recording medium having a good thermal stability and a high recording density is provided. The perpendicular magnetic recording medium includes at least a first and a second perpendicular magnetic recording layer and a substrate supporting the first and the second perpendicular magnetic recording layers. The first and the second perpendicular magnetic recording layers have different physical/magnetic properties and are formed of materials that compensate the different physical/magnetic properties. The first and the second perpendicular magnetic recording layers are selected from a layer for improving perpendicular magnetic anisotropic energy (Ku), a layer for reducing the size of crystal grains, a layer for reducing the size of magnetic domains, a layer for increasing an SNR, a layer for improving signal output, a layer for reducing noise, a layer for improving the uniformity of crystal grain sizes, and a layer for improving the uniformity of magnetic domain sizes.
Abstract:
Provided are a perpendicular magnetic recording medium having an underlayer between a substrate and a recording layer and a method of manufacturing the perpendicular magnetic recording medium. The method of manufacturing a perpendicular magnetic recording medium includes forming the underlayer of a plural-layer structure by at least 2 step processes under different deposition conditions. When using the underlayer formed by a 2-step manufacturing method, superior crystalline and high perpendicular magnetic anisotropy can be secured due to the lower underlayer, and the perpendicular magnetic recording layer having a high perpendicular coercivity and a small magnetic domain can be formed due to the underlayer beneath the recording layer.
Abstract:
A stamp includes a transparent body having an inner chamber containing an inlet/outlet tube configured to have a fluid injected and removed therefrom.
Abstract:
A method of fabricating a nanoimprint stamp includes forming a resist pattern having a nano size width on a stamp substrate by performing imprint processes repeatedly. In the imprint processes, resist layers that are selectively etched are sequentially used. The stamp substrate is etched using the resist pattern as an etch mask.