Abstract:
A plunger is provided for reciprocating inside the barrel of a fuel pump. The plunger has a proximal end and a distal end. The proximal end of the plunger includes a cavity that defines a depressed volume within the plunger. A volume filler is disposed in the cavity, where the volume filler is constrained in the cavity by a retaining element.
Abstract:
The present disclosure provides a high-pressure fuel pump having barrel sets comprising offset, opposing barrel units within the same plane and having plungers disposed therein. The high-pressure fuel pump further includes a camshaft having at least one offset lobe and a cam ring encircling the lobe and in contact with the plungers, which translate the rotational movement of the camshaft to longitudinal movement of the plungers, controlling inflow, compression, and outflow of fuel within the pump.
Abstract:
A method and system is provided of controlling a pump having a pumping element comprising: determining, by a controller, a suspension of one or more fuel delivery events for a pumping element of the at least one pumping element; subsequent to determining the suspension of the one or more fuel delivery events, providing, by the controller, a first command to open an inlet valve of the pumping element to remove a portion of residual fluid within a pumping chamber based on pressure within the pumping chamber of the pumping element; and subsequent to providing the first command, providing, by the controller, a second command to close the inlet valve of the pumping element based on a top dead center (TDC) position of the pumping element.
Abstract:
A fuel injector has a plurality of injection fuel delivery passages, which transport fuel from a proximate end to an injector cavity near the distal end of the fuel injector, wherein less than a total number of injection fuel delivery passages include an orifice. This configuration provides a reduction in fueling variation from pulse to pulse (multi-pulse) with respect to pulse separation due to pressure variation while allowing a sufficient amount of fuel flow to the injector cavity. Thus, the consistency of Start-Of-Injection (SOI) and opening rate both improve significantly and advantageously. For compactness, the orifices may be positioned in a cover plate used to retain the components of the injection control valve assembly and may further be arranged in an arc segment when viewed along a longitudinal axis.
Abstract:
A method includes determining a stored injection relationship that includes a number of fuel performance parameters. In one form the fuel performance parameters are related to a particular shape, and may be related to a particular operating condition. The method includes determining a fuel performance outcome during a fuel injection event, and updating the stored injection relationship in response to the fuel performance outcome. The fuel performance outcome can be an injected fuel quantity.
Abstract:
A system and method is provided to analyze an intermediate pressure signal portion between an end of an injection event signal portion and a start of a subsequent injection event signal portion. The analysis is simplified by identifying a plurality of single cycle windows and calculating a single value, such as a mean or a median, for each of the windows. An intermediate portion single value is determined by averaging the single values for each of the windows. The intermediate portion single value may then be used to identify pumping events or leakage errors that occur during the intermediate pressure signal portion that affect further analysis of the intermediate pressure signal portion.
Abstract:
A method includes determining a stored injection relationship that includes a number of fuel performance parameters. In one form the fuel performance parameters are related to a particular shape, and may be related to a particular operating condition. The method includes determining a fuel performance outcome during a fuel injection event, and updating the stored injection relationship in response to the fuel performance outcome. The fuel performance outcome can be an injected fuel quantity.
Abstract:
Provided are methods and fuel injection systems implemented with a plurality of injectors coupled with a common rail, the common rail coupled with a pressure sensor, and the pressure sensor coupled with a processor. The method includes: identifying, by the processor, one of the injectors to calculate a pressure change rate of the common rail associated therewith; receiving, by the processor, pressure measurements of the common rail from the pressure sensor before and during an injection event within a measurement window; using, by the processor, a pre-injection mean pressure of the common rail to determine a rail pressure drop range that is specific to the identified injector; and calculating, by the processor, the pressure change rate associated with the identified injector based on the pressure measurements of the common rail taken during the rail pressure drop range.
Abstract:
Provided are methods and fuel injection systems implemented with a plurality of injectors coupled with a common rail, the common rail coupled with a pressure sensor, and the pressure sensor coupled with a processor. The method includes: identifying, by the processor, one of the injectors to calculate a pressure change rate of the common rail associated therewith; receiving, by the processor, pressure measurements of the common rail from the pressure sensor before and during an injection event within a measurement window; using, by the processor, a pre-injection mean pressure of the common rail to determine a rail pressure drop range that is specific to the identified injector; and calculating, by the processor, the pressure change rate associated with the identified injector based on the pressure measurements of the common rail taken during the rail pressure drop range.
Abstract:
At least some embodiments of the present disclosure are directed to pump assemblies. In some embodiments, the pump is a high-pressure pump for an engine. The pump includes: an inlet valve configured to receive fuel; an armature coupled to the inlet valve and configured to actuate the inlet valve; and a pump barrel comprising a barrel guide, the barrel guide comprising a protrusion and configured to guide a motion of the armature.