摘要:
A method comprises providing a bio-based feedstock; contacting the bio-based feedstock with a solvent in a hydrolysis reaction to form an intermediate stream comprising carbohydrates; contacting the intermediate stream with an aqueous phase reforming catalyst to form a plurality of oxygenated intermediates, wherein a first portion of the oxygenated intermediates are recycled to form the solvent; and contacting at least a second portion of the oxygenated intermediates with a condensation catalyst comprising a base functionality to form a fuel blend.
摘要:
A method comprises providing a bio-based feedstock; contacting the bio-based feedstock with a solvent in a hydrolysis reaction to form an intermediate stream comprising carbohydrates; contacting the intermediate stream with an apr catalyst to form a plurality of oxygenated intermediates, wherein a first portion of the oxygenated intermediates are recycled to form the solvent; and processing at least a second portion of the oxygenated intermediates to form a fuel blend.
摘要:
Biofuels can be produced by: (i) providing a biomass containing celluloses, hemicelluloses, lignin, nitrogen compounds and sulfur compounds; (ii) removing sulfur compounds and nitrogen compounds from the biomass by contacting the biomass with a digestive solvent to form a pretreated biomass containing carbohydrates and having less than 35% of the sulfur content and less than 35% of the nitrogen content of untreated biomass on a dry mass basis; (iii) contacting the pretreated biomass directly with hydrogen in the presence of a hydrogenolysis catalyst to form a plurality of oxygenated intermediates, and (vi) processing at least a portion of the oxygenated intermediates to form a liquid fuel.
摘要:
A process for making betahydroxyaldehydes such as 3-hydroxypropanal which comprises intimately contacting (a) an oxirane, (b) carbon monoxide, (c) a reducing agent such as hydrogen, (d) from about 0.01 to about 1 weight percent, basis cobalt metal, of a cobalt hydroformylation catalyst which is optionally complexed with a tertiary phosphine ligand, and (e) a heterogeneous, preferably solid, metal promoter used at a molar ratio of 0.05, preferably 0.15, to 100 moles of heterogeneous metal relative to the moles of soluble cobalt hydroformylation catalyst.
摘要:
A method of treating an aldehyde mixture comprising a carboxylic acid and a metal cation, which method comprises: contacting the aldehyde mixture with a basic separating medium, and subsequently or simultaneously contacting with an acidic separating medium; use of the treated aldehyde mixture to prepare an alcohol; and the alcohol.
摘要:
This invention is a process for synthesizing aliphatic 1,3-diols in one step by hydroformylation and hydrogenation of oxirane, carbon monoxide, and hydrogen employing a catalyst comprising a cobalt carbonyl compound and a cocatalyst metal compound ligated with a ligand in a ligand to cocatalyst metal atom molar ratio in the range of 0.2:1.0 to 0.6:1.0, optionally in the presence of a promoter, where recovery of product is preferably accomplished via water extraction of a diol rich phase from the bulk reaction mixture. The process modifications can, particularly in combination, be beneficial with respect to product recovery, catalyst recycle, and overall economics of a one-step process for producing aliphatic 1,3-diols.
摘要:
The invention pertains to a method of preparing styrene or substituted styrene involving (1) converting a mixture containing alkylbenzene hydroperoxide or substituted alkylbenzene hydroperoxide to a mixture containing phenyl alkanol or substituted phenyl alkanol and (2) dehydrating the phenyl alkanol or substituted phenyl alkanol, characterized by oxidizing an alkene to an alkylene oxide in step (1) in the presence of a heterogenous catalyst and dehydrating the phenyl alkanol or substituted phenyl alkanol in step (2) in the presence of a homogenous dehydration catalyst to obtain styrene or substituted styrene.
摘要:
The present invention is an improvement upon the process for the production of 1,3-propanediol (PDO) wherein an aqueous solution of 3-hydroxypropanal (HPA) is formed, and the HPA is subjected to hydrogenation to produce a crude PDO mixture comprising PDO, water, MW176 acetal, and high and low volatility materials, wherein the crude PDO mixture is dried to produce a first overhead stream comprising water and some high volatility materials and a dried crude PDO mixture as a first distillate bottoms stream comprising PDO, MW176 acetal, and low volatility materials, and wherein the dried crude PDO mixture is distilled to produce a second overhead stream comprising some high volatility materials, a middle stream comprising PDO and MW176 acetal, and a second distillate bottoms stream comprising PDO and low volatility materials. The improvement on this process comprises treating the crude PDO mixture and/or the dried crude PDO mixture and/or the PDO product with an acidic zeolite, an acid form cation exchange resin, or a soluble acid to convert the MW176 cyclic acetal to more volatile materials which can be easily separated from PDO by distillation.
摘要:
Disclosed is a new catalyst composition comprising a bimetallic Co—Ru catalyst complexed with a N-heterocylcic ligand that is effective, economical, and provides improvements in oxidative stability in the one step synthesis of 1,3-propanediol (1,3-PDO) from ethylene oxide and synthesis gas. For example, cobalt-ruthenium-2,2′-bipyrimidine, 2,2′-dipyridyl, or 2,4,6-tripridyl-s-triazine catalyst precursors in cyclic ether solvents, such as 1,3-dioxolane, 1,4-dioxolane, 1,4-dioxane, and 2-ethyl-2-methyl-1,3-dioxolane, provide good yields of 1,3-PDO in a one step synthesis.
摘要:
An alkanediol such as 1,3-propanediol is prepared in a process which involves reacting an alkylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of a non-phosphine-ligated rhodium catalyst and a catalyst promoter to produce an intermediate product mixture containing a hydroxyalkanal in an amount less than 15 wt %; extracting the hydroxyalkanal from the intermediate product mixture into an aqueous liquid at a temperature less than about 100° C. and separating the aqueous phase containing hydroxyalkanal from the organic phase containing rhodium catalyst; hydrogenating the hydroxyalkanal in the aqueous phase to an alkanediol; and recovering the alkanediol. The process enables the production of an alkanediol such as 1,3-propanediol in high yields and selectivity without the use of a phosphine ligand-modified rhodium catalyst.