摘要:
A method is provided for forming an integrated circuit contact structure. A conductive region is formed on a semiconductor device. Thereafter an insulating layer is formed over the conductive region. An opening is then formed through the insulating region to the conductive region. A thin barrier layer is deposited over the integrated circuit contact structure. A portion of the thin barrier layer is removed by backsputtering the integrated circuit contact structure so that only a thin barrier sidewall remains. Finally, a conductive metal layer is deposited over the integrated circuit contact structure. In one embodiment, the integrated circuit contact structure is baked before the conductive metal layer is deposited.
摘要:
A method is provided for forming contact vias in an integrated circuit. Initially, a first buffer layer is formed over an insulating layer in an integrated circuit. The first buffer layer has a different etch rate from the insulating layer. A second buffer layer is then formed over the first buffer layer, with the second buffer layer having an etch rate which is faster than the first buffer layer. An isotropic etch is performed to create an opening through the second buffer layer and a portion of the first buffer layer. Because the second buffer layer etches faster than the first buffer layer, the slant of the sideswalls of the opening can be controlled. An anisotropic etch is then performed to complete formation of the contact via.
摘要:
A process for forming shallow silicided junctions includes the step of sputtering a layer of titanium (28) over a moat region to cover a gate electrode (18) and a sidewall oxide (22) formed on the sidewalls of the gate electrode (18). The titanium is reacted with exposed silicon regions (24) and (26) to form silicide layers (30) and (32) and then dopant impurities are implanted into the substrate (10) prior to stripping the unreacted titanium. The unreacted titanium (36), (38), or (40) functions as a mask to both offset the implanted regions from the channel region (20) under the gate electrode (18) and also to prevent impurities from entering the substrate at regions outside the defined moat region.
摘要:
A method for forming integrated circuit device structures upon active semiconductor regions of a semiconductor substrate. The active semiconductor regions are defined by Field OXide (FOX) isolation regions which are formed through a Polysilicon Buffered LOCal Oxidation of Silicon (PBLOCOS) oxidation mask structure. The PBLOCOS oxidation mask structure includes a blanket pad oxide layer which resides upon the semiconductor substrate, a blanket polysilicon buffer layer which resides upon the blanket pad oxide layer and a patterned silicon nitride layer which resides upon the blanket polysilicon buffer layer. Portions of the blanket polysilicon buffer layer and the blanket pad oxide layer exposed through the patterned silicon nitride layer are completely consumed to leave remaining the patterned silicon nitride layer, a patterned polysilicon buffer layer and a patterned pad oxide layer upon the active regions of the semiconductor substrate which are separated by the FOX isolation regions. The portions of the patterned silicon nitride layer, the patterned polysilicon buffer layer and the patterned pad oxide layer are employed in forming integrated circuit device structures upon the active semiconductor region of the semiconductor substrate.
摘要:
A method is provided for forming isolated regions of oxide of an integrated circuit, and an integrated circuit formed according to the same. A pad oxide layer is formed over a portion of a substrate. A first silicon nitride layer is formed over the pad oxide layer. A polysilicon buffer layer is then formed over the first silicon nitride layer. A second silicon nitride layer is formed over the polysilicon layer. A photoresist layer is formed and patterned over the second silicon nitride layer. An opening is etched through the second silicon nitride layer and the polysilicon buffer layer to expose a portion of the first silicon nitride layer. A third silicon nitride region is then formed on at least the polysilicon buffer layer exposed in the opening. The first silicon nitride layer is etched in the opening. A field oxide region is then formed in the opening.
摘要:
A mask is used for lightly doped drain and halo implants in an integrated circuit device. The mask exposes only portions of the substrate adjacent to field effect transistor gate electrodes. Since the halo implant is made only near the transistor channels, where it performs a useful function, adequate device reliability and performance is obtained. Since the halo implant is masked from those portions of the active regions for which it is not necessary, active region junction capacitances are lowered. Such lowered capacitances result in an improved transistor switching speed. The mask used to define the lightly doped drain and halo implant region can be easily formed from a straight forward combination of already existing gate and active area geometries.
摘要:
A structure and method for fabricating intergrated circuit which provides for the detection of residual conductive material. A first conductive layer is deposited over the intergrated circuit and patterned to define a first interconnect layer. An insulating layer in then formed over the integrated circuit. A second conductive layer is then deposited and patterned to define a second interconnect layer. Residual conductive material can be formed during pattering of the second interconnect layer when portions of the second conductive layer remain adjacent to the vertical sidewalls of the first interconnect layer. To make the residual conductive material easier to detect, the conductivity of the residual conductive material is increased by either implanting impurities into the integrated circuit or siliciding the residual conductive material with a refractory metal.
摘要:
A method for fabricating an interconnect structure in an integrated circuit. A first conductive layer is formed over an underlying region in the integrated circuit. The underlying region may be, for example, a semiconductor substrate or a gate electrode. A buffer layer is then formed over the first conductive layer, followed by the formation of an insulating layer over the buffer layer. The insulating layer and the buffer layer are patterned to define a form for the interconnect structure. A second conductive layer is then formed over the integrated circuit, and portions of the first conductive layer, the second conductive layer, and the buffer layer are silicided to form the interconnect structure.
摘要:
A MOS bulk device having source/drain-contact regions 36 which are almost completely isolated by a dielectric 35. These "source/drain" regions 36 formed by using a silicon etch to form a recess, limiting the etched recess with oxide, and backfilling with polysilicon. A short isotropic oxide etch, followed by a polysilicon filament deposition, then makes contact between the oxide-isolated source/drain-contact regions 36 and the channel region 33 of the active device. Outdiffusion through the small area of this contact will form small diffusioins 44 in silicon, which act as the electrically effective source/drain regions. Use of sidewall nitride filaments 30 on the gate permits the silicon etch step to be self-aligned.
摘要:
The present invention provides a method for inhibiting the oxidation of a titanium layer during the direct reaction of the titanium with exposed silicon areas of an integrated circuit. In one embodiment of the present invention, a titanium nitride layer is formed on the surface of the titanium layer in the reactor where the titanium layer is deposited. The titanium nitride layer provides an effective barrier against oxidation. Thus, the formation of titanium dioxide is inhibited. In addition, in those areas where titanium nitride local interconnect is to be formed between diffused areas, the extra thickness provided by the top titanium nitride layer adds in the integrity of the conductive layers. By conducting the silicidation in a nitride atmosphere, diffusion of the nitride from the titanium nitride layer into the titanium layer and substitution of those lost nitrogen atoms by the atmosphere occurs thus providing a blocking layer for the formation of titanium silicide shorts.