摘要:
A new method of provided for forming in one plane layers of semiconductor material having both high and low dielectric constants. Layers, having selected and preferably non-identical parameters of dielectric constants, are successively deposited interspersed with layers of etch stop material. The layers can be etched, creating openings there-through that can be filled with a layer of choice.
摘要:
In accordance with the objectives of the invention a new method is provided for the creation of layers of gate oxide having an unequal thickness. Active surface regions are defined over the surface of a substrate, a thick layer of gate oxide is grown over the active surface. A selective etch is applied to the thick layer of gate oxide, selectively reducing the thickness of the thick layer of gate oxide to the required thickness of a thin layer of gate oxide. The layer of thick gate oxide is blocked from exposure. N2 atoms are implanted into the exposed surface of the thin layer of oxide, rapid thermal processing is performed and the blocking mask is removed from the surface of the thick layer of gate oxide. A high concentration of nitride has now been provided in the thin layer of gate oxide.
摘要:
A new processing sequence is provided for the creation of a MIM capacitor. The process starts with the deposition of a first layer of metal. Next are deposited listed, a thin layer of metal, a layer of insulation, a second layer of metal and a layer of Anti Reflective Coating. An etch is then performed to form the second electrode of the MIM capacitor (using the etch stop layer to stop this etch), MIM spacers are formed on the sidewalls of the second electrode of the MIM capacitor (also using the etch stop layer to stop this etch). The dielectric and first electrode of the MIM capacitor are formed by etching through the second layer of insulation and the first layer of metal. This is followed by conventional processing to create contact points to the MIM capacitor.
摘要:
Methods for forming a metal-insulator-metal (MIM) capacitor using an organic anti-reflective coating (ARC) are described. The first electrode of the MIM capacitor is formed from a first metal layer. The organic ARC is applied, and the second electrode of the MIM capacitor is formed from a second metal layer. The organic ARC is then removed using a nominal clean technique. Because the organic ARC is removed, the performance of the MIM capacitor is improved. Specifically, the breakdown voltage of the MIM capacitor increases and the leakage current decreases.
摘要:
A first and second damascene copper interconnect plug are created over the surface of a substrate. A MIM capacitor, which is aligned with the second damascene copper interconnect plug, is created by a one-time etch of a stack of layers comprising Ta/capacitor dielectric/Ta. Copper interconnects are then created aligned with the MIM capacitor and the second damascene interconnect plug.
摘要:
A method of forming a device is presented. The method includes providing a structure having first and second regions. A diffusion barrier is formed between at least a portion of the first and second regions. The diffusion barrier comprises cavities that reduce diffusion of elements between the first and second regions.
摘要:
An LDMOS device includes a substrate having a surface and a gate electrode overlying the surface and defining a channel region in the substrate below the gate electrode. A drain region is spaced apart from the channel region by an isolation region. The isolation region includes a region of high tensile stress and is configured to induce localized stress in the substrate in close proximity to the drain region. The region of high tensile stress in the isolation region can be formed by high-stress silicon oxide or high-stress silicon nitride. In a preferred embodiment, the isolation region is a shallow trench isolation region formed in the substrate intermediate to the gate electrode and the drain region.
摘要:
An LDMOS device includes a substrate having a surface and a gate electrode overlying the surface and defining a channel region in the substrate below the gate electrode. A drain region is spaced apart from the channel region by an isolation region. The isolation region includes a region of high tensile stress and is configured to induce localized stress in the substrate in close proximity to the drain region. The region of high tensile stress in the isolation region can be formed by high-stress silicon oxide or high-stress silicon nitride. In a preferred embodiment, the isolation region is a shallow trench isolation region formed in the substrate intermediate to the gate electrode and the drain region.
摘要:
A high voltage device includes a substrate with a device region defined thereon. A gate stack is disposed on the substrate in the device region. A channel region is located in the substrate beneath the gate stack, while a first diffusion region is located in the substrate on a first side of the gate stack. A first isolation structure in the substrate, located on the first side of the gate stack, separates the channel and the first diffusion region. The high voltage device also includes a first drift region in the substrate coupling the channel to the first diffusion region, wherein the first drift region comprises a non-uniform depth profile conforming to a profile of the first isolation structure.
摘要:
A silicon-based inductor in a semiconductor is disclosed. One embodiment provides for an inductor having a metal region comprising turns. The metal region has spacing between adjacent turns. The width of the spacing varies. The spacing is pre-determined to optimize the performance of the inductor by reducing eddy currents in the turns and reducing eddy currents induced in a substrate. One embodiment provides for an inductor having a spiral structure. The spiral structure may have a number of turns with the spacing between the turns of the inductor being larger near the inside of the spiral structure. A large spacing between the inductor's inner turns may serve to reduce both conductor eddy currents and the induced substrate current. Thus, the structure improves the inductor's overall performance.