摘要:
A method of manufacturing a substrate for a front-facing image sensor, comprises:—providing a donor substrate comprising a semiconductor layer to be transferred,—providing a semiconductor carrier substrate,—bonding the donor substrate to the carrier substrate, an electrically insulating layer being at the bonding interface,—transferring the semiconductor layer to the carrier substrate,—implanting gaseous ions in the carrier substrate via the transferred semiconductor layer and the electrically insulating layer, and—after the implantation, epitaxially growing an additional semiconductor layer on the transferred semiconductor layer.
摘要:
In one aspect, a substrate includes a base substrate, a dielectric layer directly on the base substrate, a trap-rich layer directly on the dielectric layer, and a crystalline semiconductor layer directly on the trap-rich layer. The dielectric layer may be a stack of multiple dielectric sublayers formed of the same dielectric material or formed of two or more different dielectric materials. The substrate can be suitable to epitaxially grow on the surface of the crystalline semiconductor layer one or more layers of a compound semiconductor. One application is the growth of a stack of layers of III-V material with one or more upper layers of the stack being suitable to process in and/or on the layers a number of semiconductor devices such as transistors or diodes. The position of the trap-rich layer, between the dielectric layer and the crystalline semiconductor layer, can enable the neutralization of a parasitic surface conductive (PSC) layer at the interface between the crystalline layer and the compound layer or layers, and of an additional PSC layer caused by a direct contact between the crystalline layer and the dielectric layer. The disclosed technology is equally related to methods of producing the substrate of the disclosed technology.
摘要:
In some embodiments, the present disclosure relates to a MEMs (microelectromechanical system) package device having a getter layer. The MEMs package includes a first substrate having a cavity located within an upper surface of the first substrate. The cavity has roughened interior surfaces. A getter layer is arranged onto the roughened interior surfaces of the cavity. A bonding layer is arranged on the upper surface of the first substrate on opposing sides of the cavity, and a second substrate bonded to the first substrate by the bonding layer. The second substrate is arranged over the cavity. The roughened interior surfaces of the cavity enables more effective absorption of residual gases, thereby increasing the efficiency of a gettering process.
摘要:
A microelectromechanical system (MEMS) device includes a high density getter. The high density getter includes a silicon surface area formed by porosification or by the formation of trenches within a sealed cavity of the device. The silicon surface area includes a deposition of titanium or other gettering material to reduce the amount of gas present in the sealed chamber such that a low pressure chamber is formed. The high density getter is used in bolometers and gyroscopes but is not limited to those devices.
摘要:
A method of anisotropically dry-etching exposed substrate material on a patterned substrate is described. The patterned substrate has a gap formed in a single material made from, for example, a silicon-containing material or a metal-containing material. The method includes directionally ion-implanting the patterned structure to implant the bottom of the gap without implanting substantially the walls of the gap. Subsequently, a remote plasma is formed using a fluorine-containing precursor to etch the patterned substrate such that either (1) the walls are selectively etched relative to the floor of the gap, or (2) the floor is selectively etched relative to the walls of the gap. Without ion implantation, the etch operation would be isotropic owing to the remote nature of the plasma excitation during the etch process.
摘要:
A method for producing a semiconductor device includes providing a semiconductor substrate having a first conductivity type; implanting protons through a rear surface of the semiconductor substrate of the first conductivity type; and forming a first semiconductor region of the first conductivity type in the semiconductor substrate by performing an annealing process in an annealing furnace in a hydrogen atmosphere having a volume concentration of hydrogen that is equal to or greater than 0.5% and less than 4.65%, the first semiconductor region having a higher impurity concentration than that of the semiconductor substrate after the implantation step. The method reduces crystal defects in the generation of donors during proton implantation and improves the rate of change into a donor.
摘要:
In a method for fabricating a semiconductor element in a substrate, first implantation ions are implanted into the substrate, whereby micro-cavities are produced in a first partial region of the substrate. Furthermore, pre-amorphization ions are implanted into the substrate, whereby a second partial region of the substrate is at least partly amorphized, and whereby crystal defects are produced in the substrate. Furthermore, second implantation ions are implanted into the second partial region of the substrate. Furthermore, the substrate is heated, such that at least some of the crystal defects are eliminated using the second implantation ions. Furthermore, dopant atoms are implanted into the second partial region of the substrate, wherein the semiconductor element is formed using the dopant atoms.
摘要:
A method of producing a semiconductor element in a substrate includes forming a plurality of micro-cavities in a substrate, creating an amorphization of the substrate to form crystallographic defects and a doping of the substrate with doping atoms, depositing an amorphous layer on top of the substrate, and annealing the substrate, such that at least a part of the crystallographic defects is eliminated using the micro-cavities. The semiconductor element is formed using the doping atoms.
摘要:
A technique of reducing fluctuation between elements is provided in which a semiconductor film having a crystal structure is obtained by using a metal element that accelerates crystallization of a semiconductor film and then the metal element remaining in the film is removed effectively. A barrier layer is formed on a semiconductor film having a crystal structure by plasma CVD from monosilane and nitrous oxide as material gas. In a step of forming a gettering site, a semiconductor film having an amorphous structure and containing a high concentration of noble gas element, specifically, 1×1020 to 1×1021/cm3, is formed by plasma CVD. The film is typically an amorphous silicon film. Then gettering is conducted.
摘要:
A technique of reducing fluctuation between elements is provided in which a semiconductor film having a crystal structure is obtained by using a metal element that accelerates crystallization of a semiconductor film and then the metal element remaining in the film is removed effectively. A barrier layer is formed on a semiconductor film having a crystal structure by plasma CVD from monosilane and nitrous oxide as material gas. In a step of forming a gettering site, a semiconductor film having an amorphous structure and containing a high concentration of noble gas element, specifically, 1×1020 to 1×1021 /cm3, is formed by plasma CVD. The film is typically an amorphous silicon film. Then gettering is conducted.
摘要翻译:提供一种降低元件之间的波动的技术,其中通过使用加速半导体膜的结晶的金属元素获得具有晶体结构的半导体膜,然后有效地去除残留在膜中的金属元素。 通过等离子体CVD从作为原料气体的甲硅烷和一氧化二氮形成具有晶体结构的半导体膜上的阻挡层。 在形成吸杂位置的步骤中,通过等离子体CVD形成具有非晶结构且含有高浓度惰性气体元素的半导体膜,具体地,1×10 20至1×10 21 / cm 3。 该膜通常是非晶硅膜。 然后进行吸气。