Abstract:
One aspect of the present disclosure provides a boron nitride powder containing agglomerated particles formed by agglomeration of primary particles of hexagonal boron nitride, in which a degree of purity is 98.5% by mass or more, and a number of particles containing carbon is 10 or less per 10 g of the boron nitride powder.
Abstract:
One aspect of the present disclosure provides a boron nitride powder containing agglomerated particles formed by agglomeration of primary particles of hexagonal boron nitride, in which a degree of purity is 98.5% by mass or more, and a number of particles having a magnetizing ability is 10 or less per 10 g of the boron nitride powder.
Abstract:
The present invention relates to aggregated boron nitride particles including hexagonal boron nitride primary particles aggregated, having a specific surface area measured by the BET method of 2 to 6 m2/g and a crushing strength of 5 MPa or more. The thermally conductive resin composition of the present invention includes the aggregated boron nitride particles of the present invention. The heat dissipation member of the present invention includes the thermally conductive resin composition of the present invention. According to the present invention, aggregated boron nitride particles that can suppress the formation of voids in a heat dissipation member and can improve the insulation breakdown characteristics and the thermal conductivity of a heat dissipation member, a thermally conductive resin composition including the aggregated boron nitride particles, and a heat dissipation member using the thermally conductive resin composition can be provided.
Abstract:
An aspect of the present disclosure provides aggregate boron nitride particles in which primary hexagonal boron nitride particles are aggregated, wherein an average value of an area proportion of the primary particles in a cross section is 45% or more, a standard deviation of the area proportion of the primary particles in a cross section is less than 25, and a crushing strength is 8.0 MPa or more.
Abstract:
The present invention provides a spherical boron nitride fine powder and the other superior in filling property into resin. The present invention relates to a spherical boron nitride fine powder having the following characteristics (A) to (C): (A) the spherical boron nitride fine particles have any one or more of Si, Ti, Zr, Ce, Al, Mg, Ge, Ga, and V in an amount of 0.1 atm % or more and 3.0 atm % or less in its composition on the surface of 10 nm; (B) the spherical boron nitride fine powder has an average particle diameter of 0.05 μm or more and 1 μm or less; and (C) the spherical boron nitride fine powder has an average circularity of 0.8 or more.
Abstract:
A heat dissipation member having excellent thermal conductivity and dielectric breakdown characteristics is able to be achieved by using a thermally conductive resin composition according to the present invention. A thermally conductive resin composition which is characterized in that: the blending ratio of a spherical boron nitride fine powder having an average particle diameter of 0.05-1.0 μm, an average circularity of 0.80 or more and a purity of boron nitride of 96% by mass or more to a boron nitride coarse powder having an average particle diameter of 20-85 μm and a graphitization index of 1.5-4.0 is from 5:95 to 40:60 in terms of volume ratio; and the total content of the spherical boron nitride fine powder and the boron nitride coarse powder in the resin composition is 40-85% by volume. A heat dissipation sheet which uses this thermally conductive resin composition. A heat dissipation member for electronic components, which uses this thermally conductive resin composition.
Abstract:
A spherical boron nitride fine particle suited for use as a highly thermoconductive filler or the like has an average particle diameter of 0.01 to 1.0 μm, an orientation index of 1 to 15, a boron nitride purity of 98.0% by mass or greater, and an average circularity of 0.80 or greater. A method of producing a spherical boron nitride fine particle includes reacting ammonia with an alkoxide borate at an ammonia/alkoxide borate molar ratio of 1 to 10 in an inert gas stream at 750° C. or higher within 30 seconds, then applying heat treatment to a reaction product in an atmosphere of ammonia gas or a mixed gas of ammonia gas and an inert gas at 1,000 to 1,600° C. for at least 1 hour, and further firing the reaction product in an inert gas atmosphere at 1,800 to 2,200° C. for at least 0.5 hour.