Abstract:
A magneto-caloric effect type heat pump apparatus provides a thermo-magnetic cycle apparatus. A magnetic field modulating device has a rotary permanent magnet. By rotating the permanent magnet, magnetic field applied to a magneto-caloric element is modulated alternatively in a magnetized state and a demagnetized state. A magnetized period, when the magnetic field is applied, is shorter than a demagnetized period, when the magnetic field is removed. Thereby, it is possible to reduce weight of the magnetic field modulating device having the permanent magnet. The magneto-caloric element has a heat exchange portion which varies heat exchanging efficiency depending on flow directions of a heat transport medium. The heat exchanging efficiency in the magnetized period is higher than the heat exchanging efficiency in the demagnetized period. Therefore, it is possible to provide sufficient heat exchanging quantity even in a short magnetized period.
Abstract:
A vehicle thermal management system mounted in a vehicle includes a vehicle driving battery, a liquid heat transfer medium, a heat receiver, and a radiator. The heat receiver causes the heat transfer medium to receive heat through heat exchange with the battery. The radiator causes the heat transfer medium to release the heat through heat exchange with an air outside of the vehicle. The heat transfer medium includes a liquid base material including water and an orthosilicic acid ester compatible with the liquid base material and does not include an ionic rust inhibitor. The orthosilicic acid ester is present, as a concentration of silicon, relative to a total mass of the heat transfer medium within a range between 2000 mass ppm, non-inclusive, and 10000 mass ppm, inclusive.
Abstract:
A composite heat storage material includes a heat storage material and an inorganic material. The heat storage material is made of a strongly correlated electron material that stores and dissipates heat via solid-solid phase transition. The inorganic material is different from the material of the heat storage material. The heat storage material and the inorganic material are mixed. The composite heat storage material can have characteristics of both the heat storage material and the inorganic material.
Abstract:
An antenna device includes: antennas; magnetic oscillation element units converting electrical energy to high-frequency power; and a modulator outputting electrical energy input from outside to at least two magnetic oscillation element units, with a time difference to differentiate phases of high-frequency power converted from electrical energy by at least two magnetic oscillation element units. The magnetic oscillation element units respectively include a pair of electrodes, and further include, between the pair of electrodes, a PIN layer, a free layer, and an intermediate layer. A resistance value of an element configured by the PIN, free and intermediate layers changes according to the angle between the magnetization direction of the PIN layer and the magnetization direction of the free layer. The antennas transmit electromagnetic waves to open space outside the magnetic oscillation element units with the supply of high-frequency power.
Abstract:
A magnetic heat pump system which arranges permanent magnets at the two sides of a magnetocalorific effect material to thereby strengthen the magnetic field to improve the cooling and heating ability, which magnetic heat pump system uses first and second magnets which move inside and outside of the containers in the state facing each other to change a magnitude of a magnetic field which is applied to a plurality of containers in which a magnetocalorific effect material is stored so as to change a temperature of a heat transport medium which is made to flow through the containers by a reciprocating pump, the intensity of the magnetic field which is applied to the magnetocalorific effect material in the containers being increased to enlarge the change of temperature of the heat transport medium which is discharged from the magnetic heat pump and improve the cooling and heating efficiency.
Abstract:
A reactor includes a reaction part and a removal part. The reaction part is configured to generate at least two products as a result of a reaction of an unreacted material. The removal part is configured to selectively occlude at least one product from the at least two products so as to separate and remove the at least one product. The removal part includes an absorbent and a cooling unit. The absorbent releases heat at time of the selective occlusion of the at least one product. The cooling unit is configured to remove the heat released by the absorbent.
Abstract:
A refrigeration cycle device includes a high-temperature side heat exchanger, an expansion valve for decompressing the refrigerant flowing out of the high-temperature side heat exchanger, a low-temperature side heat exchanger that exchanges heat between the refrigerant decompressed by the expansion valve and coolant, a high-temperature coolant circuit in which the coolant circulates to the high-temperature side heat exchanger, a low-temperature coolant circuit in which the coolant circulates to the low-temperature side heat exchanger, a battery and a low-temperature side radiator configured to exchange heat with the coolant in the low-temperature coolant circuit; and a heat transfer portion configured to transfer heat from the high-temperature coolant circuit to the low-temperature coolant circuit such that the coolant dissipates heat in the battery and the low-temperature side radiator.
Abstract:
During a normal operation, a refrigeration cycle device is switched to a refrigerant circuit in which heat contained in a high-pressure refrigerant flowing out of an interior radiator is stored in a heat storage member. When frost is formed on an evaporator, the refrigeration cycle device is switched to another refrigerant circuit in which the exterior heat exchanger is heated and defrosted using heat stored in the heat storage member as a heat source. The heat storage member uses a material formed by adding W (tungsten) as an additive to VO2 (vanadium dioxide) which is a transition metal oxide having a property of a phase transition between a metal and an insulator. The heat storage member effectively stores or dissipates heat depending on a temperature zone of the refrigerant, thereby suppressing an increase in energy consumption of a compressor.
Abstract:
A magneto-caloric-effect element has a plurality of element units. The element units have lengths, respectively. The element units have different Curie temperatures, respectively. The element units demonstrate magneto-caloric effects. Two adjoining performance distribution crosses at a cross temperature. A temperature in the rated operational status between two adjoining element units is called a boundary temperature. The lengths and/or Curie temperatures are set so that the boundary temperatures and the cross temperatures coincide each other. Thereby, a plurality of element units can function at high effectiveness in the rated operational status.
Abstract:
A heat storing system includes: a heat source that emits heat to a first thermal medium; and a heat storing unit. The heat storing unit includes a heat storing body container housing a heat storing body, and a thermal medium container housing a liquid phase thermal medium. The heat storing body stores or emits heat in accordance with phase change of the heat storing body. The heat storing unit is configured to conduct a cold heat emission mode in which the liquid phase thermal medium and a cooling medium exchange heat in the thermal medium container to evaporate the thermal medium such that cold heat is emitted to the cooling medium.