Abstract:
Polyurethanes are made by reacting, in one or more reaction steps, a) at least one organic polyisocyanate, b-1) one or more polyols having a hydroxyl equivalent weight of greater than 250 g/mol and a nominal hydroxyl functionality of 2 to 4 and b-2) at least one alkoxylated Mannich base to produce a polyurethane polymer having a density of at least 750 kg/m3 and a hard segment content of 20 to 80% by weight.
Abstract:
An epoxy terminated prepolymer formed as a reaction product of a cycloaliphatic epoxide resin and an amine terminated polymeric polyol, and a catalyst that promotes the reaction of the cycloaliphatic epoxide resin and the aminated polyol. The epoxy terminated prepolymer and an anhydride hardener react to form an epoxy elastomer composition having a microphase separated morphology of hard particles, formed with the anhydride hardener reacted with the epoxy terminated prepolymer, dispersed in a soft continuous phase formed from polymeric polyol in the epoxy terminated prepolymer.
Abstract:
A reaction system for forming a step-growth polymerized sulfur-containing polyester polyol includes at least one sulfur-containing component selected from the group of a sulfur-containing polyol or a sulfur-containing polycarboxylic acid, an amount of the at least one sulfur-containing component being from 1 wt % to 60 wt %, at least one aromatic component selected from the group of an aromatic multi-functional ester, an aromatic multi-functional carboxylic acid, and an aromatic anhydride, an amount of the at least one aromatic component being from 1 wt % to 60 wt %, at least one simple polyol that excludes sulfur and is different from the sulfur containing polyol, an amount of the at least one simple polyol being from 0 wt % to 60 wt %, and at least one polymerization catalyst. The reaction system for forming the sulfur-containing polyester polyol has a sulfur content that is from 2 wt % to 20 wt %.
Abstract:
A reaction system for forming a step-growth polymerized sulfur-containing polyester polyol includes at least one sulfur-containing component selected from the group of a sulfur-containing polyol or a sulfur-containing polycarboxylic acid, an amount of the at least one sulfur-containing component being from 1 wt % to 60 wt %, at least one aromatic component selected from the group of an aromatic multi-functional ester, an aromatic multi-functional carboxylic acid, and an aromatic anhydride, an amount of the at least one aromatic component being from 1 wt % to 60 wt %, at least one simple polyol that excludes sulfur and is different from the sulfur containing polyol, an amount of the at least one simple polyol being from 0 wt % to 60 wt %, and at least one polymerization catalyst. The reaction system for forming the sulfur-containing polyester polyol has a sulfur content that is from 2 wt % to 20 wt %.
Abstract:
A polyisocyanate component, a polyurethane foaming system, and an article made therefrom, wherein the polyisocyanate component includes (a) a preformed mixture including an aromatic oxazolidone compound that is the reaction product of at least one aromatic epoxide and at least one first polyisocyanate having an average isocyanate functionality of no more than 2.7 and greater than 1.8, in the presence of at least one catalyst, the aromatic oxazolidone compound includes at least one free isocyanate group and at least one aromatic oxazolidone group, the aromatic oxazolidone group includes an aromatic group and an oxazolidone group, and (b) at least one second polyisocyanate has an average isocyanate functionality equal to or greater than 2.7 and less than 6.0. The second polyisocyanate is added to the preformed mixture to form the polyisocyanate component. The polyisocyanate component has a viscosity of no more than 4.0 Pa-sat 25° C., an aromatic oxazolidone group content of 2 weight percent to 10 weight percent based on a total weight of the polyisocyanate component, and an average isocyanate functionality of from 1.8 to 6.0.
Abstract:
An epoxy composition that includes an epoxy-terminated prepolymer, an alkanolamine hardener having at least one hydroxyl group and an organometallic compound, where amine groups of the alkanolamine hardener react with epoxy groups of the epoxy-terminated prepolymer in a stoichiometric ratio to form a cured epoxy composition. The epoxy-terminated prepolymer is formed from a reaction product of an amine terminated polymeric polyol and a molar excess of epoxy groups in an epoxy monomer, relative to a molar amount of amine groups in the amine terminated polymeric polyol.
Abstract:
An amine endcapped adduct composition including an amine endcapped adduct formed from a monofunctional epoxide and a polyether amine. The monofunctional epoxide and the polyether amine are combined in a molar ratio of 1.0:2.0 to 1.0:8.0 moles of epoxide functionalities to moles of polyether amine functionalities.
Abstract:
Polyisocyanate-based polymers are formed by curing a reaction mixture containing at least one polyisocyanate and at least one isocyanate-reactive compound having at least two isocyanate-reactive groups in the presence of a bismuth mono- or dithiocarbamate or mono- or dithiocarbonate salt.
Abstract:
Polyisocyanate-based polymers are formed by curing a reaction mixture containing at least one polyisocyanate and at least one isocyanate-reactive compound having at least two isocyanate-reactive groups in the presence of a tertiary amine catalyst having a molecular weight of up to 300 and from 0.01 to 1.0 mole per mole of the tertiary amine compound(s) of a non-protic, non-catalytic, metal-containing Lewis acid.
Abstract:
A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.