Abstract:
Embodiments of the present disclosure are directed towards hybrid foam formulations that include: an isocyanate-reactive composition, and a high-functionality crosslinker; an azo type radical initiator; and an isocyanate.
Abstract:
Solvent-based adhesive composition are disclosed, the compositions comprising (A) a polyester-urethane resin, (B) an epoxy-terminated polyester compound, (C) a phosphoric acid, and (D) an aliphatic isocyanate curing agent. Methods for preparing a solvent-based adhesive composition, the methods comprising providing a polyester-urethane resin, providing an epoxy-terminated polyester compound, mixing the polyester-urethane resin, epoxy-terminated polyester compound, and phosphoric acid to form a resin mixture, diluting the resin mixture in a solvent to form a diluted resin mixture having an application solid content from 25 to 55 weight percent, based on the total weight of the diluted resin mixture, and curing the diluted resin mixture with an aliphatic isocyanate curing agent at a mix ratio (parts by weight resin mixture before dilution:parts by weight aliphatic isocyanate curing agent) of from 100:1 to 100:12. Laminates prepared comprising the solvent-based adhesives and according to the disclosed methods are also disclosed.
Abstract:
The process for synthesizing a poly(amic acid) polymer or a polyimide polymer is improved by using a solvent system consisting essentially of: (A) a first component consisting essentially of N,N-dimethyl propionamide (DMPA), and (B) optionally, a second component consisting essentially of at least one of a sulfoxide, e.g., DMSO, an alkyl phosphate, e.g., triethyl phosphate, and an aprotic glycol ether, e.g., propylene glycol methyl ether acetate.
Abstract:
Polymeric compositions comprising a polybutylene terephthalate, an ethylene-based polymer, and a maleated ethylene-based polymer. Optical cable components fabricated from the polymeric composition. Optionally, the polymeric composition can further comprise one or more additives, such as a filler. The optical fiber cable components can be selected from buffer tubes, core tubes, and slotted core tubes, among others.
Abstract:
A wireless-communications-tower component being at least partially formed from a polymer composite. The polymer composite comprises a thermoplastic polymer and a filler, where the thermoplastic polymer is non-foamed. The polymer composite has a thermal conductivity of at least 0.5 watt per meter Kelvin (“W/m?K”) measured at 25 C. Such wireless-communications-tower components include radio frequency (“RF”) cavity filters, heat sinks, enclosures, and combinations thereof.
Abstract:
The present invention provides packages comprising an inner surface comprising polyalkylene ether modified polyolefin. In some embodiments, the polyalkylene ether modified polyolefin is the reaction product of an amine-terminated polyalkylene ether and a maleated polyolefin.
Abstract:
The present invention appreciates that compounds comprising nitrogen-containing moieties that are at least divalent (e.g., urea, urethane, amide, etc.) can be reacted with azides using at least radiation energy to initiate the reaction between at least a portion of the compounds and the azides to form membranes that have surprisingly high selectivities for acid gases relative to nonpolar gases such as hydrocarbons. The membranes are also resistant to CO2 plasticization and have high acid gas flux characteristics. The resultant membranes can be extremely thin (e.g., 10 micrometers or less), which promotes high permeability for the acid gas and can translate into high productivity on a scaled-up, industrial level.
Abstract:
The present invention appreciates that compounds comprising nitrogen-containing moieties that are at least divalent (e.g., urea, urethane, amide, etc.) can be reacted with azides using at least radiation energy to initiate the reaction between at least a portion of the compounds and the azides to form membranes that have surprisingly high selectivities for acid gases relative to nonpolar gases such as hydrocarbons. The membranes are also resistant to CO2 plasticization and have high acid gas flux characteristics. The resultant membranes can be extremely thin (e.g., 10 micrometers or less), which promotes high permeability for the acid gas and can translate into high productivity on a scaled-up, industrial level.
Abstract:
Polyol compositions that contain imide groups are prepared by producing imide compounds from trimellitic anhydride and an aromatic aminoacid or an aromatic diamine, then esterifying the imide compounds with one or more polyols that have hydroxyl equivalent weights of 30 to 500. Aromatic carboxylic acid derivatives may be present during the esterification step to produce polyol compositions that contain species that have imide groups, and other species that do not have imide groups. The polyol compositions are useful in making isocyanate-based polymers, in particular polyurethane and/or polyurethane-isocyanuranate foams. The presence of the imide groups in the isocyanate-based polymers imparts fire retardant properties.
Abstract:
Thermally conductive compositions include a blocked isocyanate prepolymer composition containing an isocyanate prepolymer blocked with one or more of alkylphenol or alkenylphenol; and an amine composition containing: one or more polyetheramines, and one or more catalysts selected from a group consisting of carboxy late salts, tertiary amines, amidines, guanidines, and diazabicyclo compounds; and a thermally conductive filler present at a percent by weight of the thermally conductive composition (wt %) in a range of 60 wt % to 98 wt %; wherein the thermally conductive composition cures at a temperature in the range of 18° C. to 35° C. when the blocked isocyanate prepolymer composition and the amine composition are mixed. Methods include preparing a thermally conductive gap filler prepared by combining a blocked isocyanate prepolymer composition and an amine composition, and curing the resulting thermally conductive composition, such as at room temperature.