摘要:
A method and apparatus of producing inorganic semiconducting nanoparticles having a stable surface includes providing an inorganic bulk semiconductor material milled in the presence of a selected reducing agent. The reducing agent acts to chemically reduce oxides of the semiconductor material, or prevent the formation of such oxides to provide semiconducting nanoparticles having a stable surface, allowing electrical contact between the nanoparticles. The milling media and/or one or more components of the mill include the selected reducing agent. The milling media or mill are typically composed of a metal selected from the group comprising iron, chromium, cobalt, nickel, tin, titanium, tungsten, vanadium, and aluminum, or an alloy containing one or more of these metals. Alternatively, the selected reducing agent includes a liquid contained in the mill during milling, which is typically an acidic solution containing any of hydrochloric, sulphuric, nitric, acetic, formic, or carbonic acid, or a mixture thereof.
摘要:
A method is provided of producing inorganic semiconducting nanoparticles having a stable surface. The method comprises providing an inorganic bulk semiconductor material, such as silicon or germanium, and milling the bulk semiconductor material in the presence of a selected reducing agent. The reducing agent acts to chemically reduce oxides of one or more component elements of the semiconductor material, or prevent the formation of such oxides by being preferentially oxidised, thereby to provide semiconducting nanoparticles having a stable surface which allows electrical contact between the nanoparticles. The milling may take place in a mill in which the milling media and/or one or more components of the mill comprise the selected reducing agent. For example, the milling can be carried out in a high energy mill with a hammer action in which a pestle of the mill, a mortar of the mill, or both are composed of the selected reducing agent, or a low energy, stirred media mill, such as a ball mill, a rod mill or similar, in which the milling media, a lining of the mill, or both are composed of the reducing agent. The milling media or mill are typically composed of a metal selected from the group comprising iron, chromium, cobalt, nickel, tin, titanium, tungsten, vanadium, and aluminium, or an alloy containing one or more of said metals. In another embodiment of the method, the selected reducing agent comprises a liquid contained in the mill during milling of the bulk semiconductor material. The liquid is typically an acidic solution containing any of hydrochloric, sulphuric, nitric, acetic, formic, or carbonic acid, or a mixture thereof. The invention extends to a mill for carrying out the method.
摘要:
A method of producing a printable composition comprises mixing a quantity of particulate semiconductor material with a quantity of a binder. The semiconductor material is typically nanoparticulate silicon with a particle size in the range from 5 nanometres to 10 microns. The binder is a self-polymerising material comprising a natural oil, or a derivative or synthetic analogue thereof. Preferably the binder comprises a natural polymer formed by auto-polymerisation of a precursor consisting of a natural oil, or its derivatives including pure unsaturated fatty acids, mono- and di-glycerides, or methyl and ethyl esters of the corresponding fatty acids. The method may include applying the printable composition to a substrate, in single or multiple layers, and allowing the printable composition to cure to define the component or conductor on the substrate.
摘要:
A thin film semiconductor in the form of a metal semiconductor field effect transistor, includes a substrate 10 of paper sheet material and a number of thin film active inorganic layers that are deposited in layers on the substrate. The active layers are printed using an offset lithography printing process. A first active layer comprises source 12.1 and drain 12.2 conductors of colloidal silver ink, that are printed directly onto the paper substrate. A second active layer is an intrinsic semiconductor layer 14 of colloidal nanocrystalline silicon ink which is printed onto the first layer. A third active layer comprises a metallic conductor 16 of colloidal silver which is printed onto the second layer to form a gate electrode. This invention extends to other thin film semiconductors such as photovoltaic cells and to a method of manufacturing semiconductors.