Abstract:
A component which can be produced at wafer level has a first chip and a second chip connected thereto. The connection is (at least partially) established via a first and a second connecting structure and a first and a second contact structure of the second chip. An adaptation structure between the first chip and the first connecting structure equalizes a height difference between the first and the second contact structure.
Abstract:
A component comprising a carrier, a chip component and a MEMS component is proposed, wherein the mechanically sensitive MEMS component is mounted below a half-shell on the carrier. The component is encapsulated with a molding compound in a transfer molding process.
Abstract:
A microphone and a method for producing a microphone are disclosed. The microphone includes a substrate, a spring element plastically elongated in a direction perpendicular to the substrate, a transducer element in electrical contact with the substrate by way of the spring element and a cover to which the transducer element is fastened, the cover is arranged in such a way that the transducer element is arranged between the cover and the substrate.
Abstract:
A multi-MEMS module is specified which can be produced expediently and enables a smaller design. The module comprises a housing having an interior and a first and a second opening, a first MEMS chip and a second MEMS chip. The first MEMS chip is acoustically coupled to the first opening. The second MEMS chip is acoustically coupled to the second opening.
Abstract:
A MEMS sensor component with a reduced sensitivity to internal or external stress and small spatial dimensions is provided. The component comprises a MEMS chip arranged in a cavity below a cap and elastically mounted to a carrier substrate by a connection element in a flip-chip configuration.
Abstract:
A sensor component having a MEMS sensor and an ASIC for one sensor function each. A base element, a wall element in the form of a frame and a cover together enclose a cavity of a housing. The MEMS sensor is mounted inside the cavity on the base element of the housing. The ASIC has an active sensor surface and is mounted on or under the cover or is embedded in the cover. Electrical external contacts for the MEMS sensor and ASIC are provided on an external surface of the housing. The cavity has at least one opening or bushing.
Abstract:
A housing for an electric component and a method for producing a housing for an electric component are disclosed. In an embodiment the housing includes a first housing part and a second housing part, wherein the first housing part is connected to the second housing part in a joining region, and wherein the joining region is at least partially covered by a coating containing sprayed-on particles.
Abstract:
A top-port MEMS-microphone has an upper side and a bottom side. The microphone includes a MEMS chip with a monolithically connected protection element at the upper side, a backplate, and a membrane. The microphone also includes a sound inlet at the upper side and a mechanical or electrical connection at the bottom side.
Abstract:
A microphone and a method for producing a microphone are disclosed. The microphone includes a substrate, a spring element plastically elongated in a direction perpendicular to the substrate, a transducer element in electrical contact with the substrate by way of the spring element and a cover to which the transducer element is fastened, the cover is arranged in such a way that the transducer element is arranged between the cover and the substrate.
Abstract:
A multi-MEMS module is specified which can be produced expediently and enables a smaller design. The module comprises a housing having an interior and a first and a second opening, a first MEMS chip and a second MEMS chip. The first MEMS chip is acoustically coupled to the first opening. The second MEMS chip is acoustically coupled to the second opening.