Abstract:
Provided herein are membranes including a blend of a propylene-based elastomer and an ethylene copolymer, a thermoplastic resin, a flame retardant, and an ultraviolet stabilizer.
Abstract:
This invention relates to processes to produce vinyl terminated polyethylene involving contacting ethylene with a supported metallocene catalyst system; wherein the supported catalyst system comprises a support material; an alumoxane activator; and a metallocene compound. A supported metallocene catalyst system is also disclosed. Processes to produce ethylene copolymers are also disclosed.
Abstract:
This invention relates to a polyolefin comprising one or more aromatic moieties according to the following formulae: wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; Ar is attached to the terminal portion of the VTM to provide PO—Ar or at the vinylidene carbon of the VTM to provide PO—CH(Ar)CH3; and Ar is a substituted or unsubstituted aromatic group.
Abstract:
This invention relates to processes to produce polyethylene involving contacting ethylene with a metallocene catalyst system; wherein the catalyst system comprises: a stoichiometric activator; and a metallocene compound. The metallocene catalyst system is also disclosed.
Abstract:
Disclosed is a method of functionalizing a vinyl terminated polyolefin, the method comprising combining a vinyl terminated polyolefin and a α,β-unsaturated carbonyl compound at a temperature of at least 150° C. and a pressure of at least 14 psi, forming a functionalized polyolefin. The functionalized polyolefin comprises a compound or mixture of compounds represented the formula: wherein each R1 is, independently, selected from hydrogen and C1 to C4 or C10 alkyls; n is an integer from 2 to 800; and each X is, independently, a functional group derived from the α,β-unsaturated carbonyl compound.
Abstract:
Disclosed herein is an in-reactor produced multi-component copolymer comprises a semi-crystalline component having a crystallinity of 20% or more, and an amorphous component having a crystallinity of 5% or less. The copolymer comprises at least 80 wt % of units derived from propylene and from about 1 to about 20 wt % of units derived from at least one C6 to C12 alpha-olefin. The copolymer has a viscosity at 190° C. of at least 530 mPa sec and a heat of fusion between about 10 and about 70 J/g. An adhesive containing the copolymer exhibits a good balance of adhesive properties and mechanical strength.
Abstract:
This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(−0.94(mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)−83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
Abstract:
Methods for the production of heterophasic polymers in gas and slurry phase polymerization processes, and polymer compositions made therefrom, are disclosed herein.
Abstract:
Methods for the production of heterophasic polymers in gas and slurry phase polymerization processes, and polymer compositions made therefrom, are disclosed herein.