Abstract:
A sensor comprising: a first electrode formed of an electrically conductive material and configured to be located in contact which a solution to be analysed; a second electrode configured to be in electrical contact with the solution to be analysed; an electrical controller configured to apply a potential difference between the first and second electrodes to electro-deposit chemical species from the solution onto the first electrode, and an x-ray fluorescence spectrometer configured to perform an x-ray fluorescence spectroscopic analysis technique on the electro-deposited chemical species, the x-ray fluorescence spectrometer comprising an x-ray source configured to direct an x-ray excitation beam to the electro-deposited chemical species on the first electrode and an x-ray detector configured to receive x-rays emitted from the electro-deposited chemical species and generate spectroscopic data about the chemical species electro-deposited on the first electrode, wherein the sensor is configured such that in use the x-ray excitation beam incident on the electro-deposited chemical species on the first electrode is attenuated by no more than 60%.
Abstract:
an x-ray fluorescence spectrometer (52); and a sample holder (2) for the x-ray fluorescence (XRF) spectrometer (52), wherein the sample holder (2) comprises: an electrically conductive synthetic diamond electrode (4) providing a front surface (6) on which chemical species can be electro-deposited from a solution (48) comprising the chemical species; an ohmic contact (8) disposed on a rear surface of the electrically conductive synthetic diamond electrode (4); and an electrical connector (10) which is connected to the ohmic contact (8), and wherein the x-ray fluorescence spectrometer (52) comprises: an XRF sample stage (58) configured to receive the sample holder (2); an x-ray source (54) configured to apply an x-ray excitation beam to the chemical species electro-deposited on the electrically conductive synthetic diamond electrode (4) when the sample holder (2) is mounted to the XRF sample stage (58); an x-ray detector (60) configured to receive x-rays emitted from the chemical species electro-deposited on the front surface (6) of the electrically conductive synthetic diamond material when the sample holder (2) is mounted to the XRF sample stage (58); and a processor (62) configured to generate x-ray fluorescence spectroscopic data based on the x-rays received by the x-ray detector. Such system allows to carry out simultaneously and in-situ stripping voltammetry measurements together with X-ray fluorescence measurements.
Abstract:
A boron doped synthetic diamond material which has the following characteristics: a solvent window meeting one or both of the following criteria as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode in a solution containing only deionised water and 0.1 M KNO3 as a supporting electrolyte at pH 6: the solvent window extends over a potential range of at least 4.1 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 38 mA cm−2; and the solvent window extends over a potential range of at least 3.3 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 0.4 mA cm−2; a peak-to-peak separation ΔEp (for a macroelectrode) or a quartile potential ΔE3/4—1/4 (for a microelectrode) of no more than 70 mV as measured by sweeping a potential of the boron doped synthetic diamond material at a rate of 100 mV s−1 with respect to a saturated calomel reference electrode in a solution containing only deionised water, 0.1 M KNO3 supporting electrolyte, and 1 mM of FcTMA+ or Ru(NH3)63+ at pH 6; and a capacitance of no more than 10 μF cm−2 as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode between 70 mV and −70 mV in a solution containing only deionised water and 0.1 M KNO3 supporting electrolyte at pH 6, measuring resultant current, subtracting a current value at 0 V when sweeping towards negative potentials from a current value at 0 V when sweeping towards positive potentials, dividing the subtracted current value by 2, and then dividing the result by an area (cm2) of the boron doped synthetic diamond material and by a rate at which the potential is swept (Vs−1) to give a value for capacitance in F cm−2.
Abstract:
A method of fabricating a synthetic diamond coated compound semiconductor substrate, the method comprising: loading a composite substrate into a chemical vapour deposition (CVD) reactor, the composite substrate comprising a single crystal carrier wafer, a layer of single crystal compound semiconductor epitaxially grown on the carrier wafer, and an interface layer disposed on the layer of compound semiconductor, the interface layer forming a growth surface suitable for growth of synthetic diamond material thereon via a CVD technique; and growing a layer of CVD diamond material on the growth surface of the interface layer, wherein during growth of CVD diamond material a temperature difference at the growth surface between an edge and a centre point thereof is maintained to be no more than 80° C., and wherein the carrier wafer has an aspect ratio, defined by a ratio of thickness to width, of no less than 0.25/100.
Abstract:
A method of fabricating a plurality of single crystal CVD diamonds. The method includes mounting a plurality of single crystal diamond substrates on a first carrier substrate. The plurality of single crystal diamond substrates is subjected to a first CVD diamond growth process to form a plurality of single crystal CVD diamonds on the plurality of single crystal diamond substrates. The plurality of single crystal CVD diamonds are mounted in a recessed carrier substrate and subjected to a second CVD diamond growth process.
Abstract:
An electrochemical sensor comprising: a boron doped diamond electrode formed of boron doped diamond material; an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode; electrochemically active surface groups bonded to the non-diamond carbon sites for generating a redox peak associated with a target species which reacts with the electrochemically active surface groups bonded to the non-diamond carbon sites when a solution containing the target species is disposed in contact with the sensing surface in use; an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate said redox peak; and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said redox peak.
Abstract:
A polycrystalline chemical vapor deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 μm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centered on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ≤0.2 cm−1 at 10.6 μm; and a dielectric loss coefficient at 145 GHz, of tan δ≤2×10−4.