Abstract:
Systems, devices, and methods are disclosed for determining whether to provide an over-the-air (OTA) update to a vehicle. An example method includes determining an update characteristic of a pending software update for a vehicle. The method also includes determining a vehicle battery state of charge (SOC) threshold based on the update characteristic. The method further includes modifying the threshold based on a location of the vehicle. The method still further includes determining a SOC of a battery of the vehicle. And the method yet further includes responsively providing the pending software update to the vehicle based on the SOC and the threshold.
Abstract:
A method is provided for estimating distance to empty (DTE) for a vehicle. The method includes a controller which may, in response to detecting a change in a vehicle kinetic energy level due to vehicle acceleration or deceleration during a drive cycle, output a DTE modified by a predicted DTE range adjustment selected to include a kinetic energy compensation input corresponding to and correcting for the change in the vehicle kinetic energy level. An electrified vehicle having an energy conversion device, an energy source, one or more brake systems, and at least one controller is also provided. The controller may be programmed to, in response to detecting a change in a vehicle kinetic energy level due to vehicle acceleration or deceleration during a drive cycle, output a distance to empty to the interface based on conditions of vehicle components and the energy source compensated by a kinetic energy compensation input.
Abstract:
A vehicle includes an electric machine configured to provide torque to vehicle wheels, a battery electrically coupled with and configured to provide electric power to the electric machine, a display configured to signal information to an operator, and a processor. The processor is configured to present a vehicle driving range on the display. The vehicle driving range is based on a known vehicle route including at least one route segment, an estimated energy usage for the route segment, an available battery charge, and stored energy consumption data from previous drive cycles.
Abstract:
An example method of controlling an electric vehicle includes altering operation of an electric vehicle in response to a predicted energy consumption rate. The method includes adjusting the predicted energy consumption in response to variations in past energy consumption rates.
Abstract:
A vehicle is provided which may include an energy conversion device, an energy source to supply power to the energy conversion device, and at least one controller. The controller may be programmed to, in response to detecting one or more noise factors expected to affect propulsive energy consumption of the energy conversion device from vehicle start until the energy source is empty, output a distance to empty (DTE) based on a change in energy consumption rate due to the one or more noise factors and predicted to last at least until the energy source is empty. The controller may further include a DTE prediction architecture including a feed-forward energy consumption estimator, an energy consumption learning filter, and a DTE calculator. A method for estimating distance to empty for a vehicle is also provided which may output a DTE modified by a predicted change in energy consumption rate selected to include a compensation factor corresponding to and correcting for a noise factor.
Abstract:
A controller in a stop/start vehicle may anticipate a vehicle stop and engine shutdown event in response to detecting a vehicle approach to an intersection. The controller may disable a power steering system or otherwise prepare vehicle subsystems for shutdown prior to the anticipated shutdown event. The controller may also enable the power steering system in response to anticipating an automatic restart event.
Abstract:
An engine of a stop/start vehicle, after the engine has been automatically stopped, may be commanded to automatically restart in response to detecting that the vehicle is in a turn lane based on traffic data in a vicinity of the vehicle such that the engine is automatically restarted before a brake pedal is released and a steering wheel is turned.
Abstract:
A stop/start system of a micro-hybrid vehicle may selectively initiate an engine auto start in response to a PRNDL gear lever/transmission being moved/shifted out of DRIVE after an engine auto stop and a determination that the vehicle is located, for example, in an intersection or railroad crossing prior to the PRNDL gear lever/transmission being moved/shifted into REVERSE.
Abstract:
A system for a vehicle includes a controller, and a telematics control unit configured to, in response to receiving instructions indicating transfer and installation techniques supported by the controller to update the controller with a software update, transfer the software update to the controller responsive to vehicle state being compatible with the transfer technique, and install the software update to the controller responsive to vehicle state being compatible with the installation technique.
Abstract:
A vehicle includes a controller and a processor. The processor is programmed to prompt the user with a selection to install a software update to the controller responsive to a user preference value, computed from user selections whether or not to install software updates associated with contextual information that matches a software update to be installed, exceeding a threshold defined by a priority of the software update, and update the user preference value per the selection.