Abstract:
An electric wire apparatus includes an electric wire including an aluminum alloy wire rod having an outer periphery portion coated, and a crimp terminal crimped to an end portion of the electric wire, the crimp terminal having a barrel portion crimped with the aluminum alloy wire rod, the barrel portion having a one-end closed tubular shape. The aluminum alloy wire rod has a composition including 0.10 mass % to 1.00 mass % of magnesium (Mg), 0.10 mass % to 1.00 mass % of silicon (Si), 0.01 mass % to 2.50 mass % of iron (Fe), 0.000 mass % to 0.100 mass % of titanium (Ti), 0.000 mass % to 0.030 mass % of boron (B), 0.00 mass % to 1.00 mass % of copper (Cu), 0.00 mass % to 0.50 mass % of silver (Ag), 0.00 mass % to 0.50 mass % of gold (Au), 0.00 mass % to 1.00 mass % of manganese (Mn), 0.00 mass % to 1.00 mass % of chromium (Cr), 0.00 mass % to 0.50 mass % of zirconium (Zr), 0.00 mass % to 0.50 mass % of hafnium (Hf), 0.00 mass % to 0.50 mass % of vanadium (V), 0.00 mass % to 0.50 mass % of scandium (Sc), 0.00 mass % to 0.50 mass % of cobalt (Co), 0.00 mass % to 0.50 mass % of nickel (Ni), and the balance including aluminum and inevitable impurities.
Abstract:
In an electrical wire connecting structure and a method of manufacturing the electrical wire connecting structure, a terminal having a tube-shaped portion of 2.0 mm in inner diameter is prepared for an electrical wire having a conductor cross-sectional area of 0.72 to 1.37 mm2, the electrical wire 13 is inserted into an electrical wire insertion port of the tube-shaped portion of the electrical wire, and the tube-shaped portion and the core wire portion of the electrical wire are compressed to be crimp-connected to each other. Furthermore, a terminal having a tube-shaped portion of 3.0 mm in inner diameter is prepared for an electrical wire having a conductor cross-sectional area of 1.22 to 2.65 mm2, the electrical wire is inserted into the electrical wire insertion port of the tube-shaped portion 25 of the electrical wire, and the tube-shaped portion and the core wire portion of the electrical wire are compressed to be crimp-connected to each other.
Abstract:
A metal member includes a base material composed of one of copper and a copper alloy, a white metal layer provided on the base material at a part or an entirety thereof, and an oil film provided on the white metal layer. The white metal layer has a thickness of 0.01 μm to 0.80 μm. A surface of the white metal layer has an arithmetic mean roughness of 0.6 μm to 1.2 μm. The oil film has an electric double-layer capacitance of 1.5 μF/cm2 to 7.0 μF/cm2.
Abstract translation:金属构件包括由铜和铜合金中的一种构成的基材,在其一部分或全部设置在基材上的白色金属层和设置在白色金属层上的油膜。 白色金属层的厚度为0.01μm〜0.80μm。 白色金属层的表面的算术平均粗糙度为0.6μm〜1.2μm。 油膜的电双层电容为1.5μF/ cm 2〜7.0μF/ cm 2。
Abstract:
Provided are an electrodeposited copper foil, a negative electrode that is for a lithium ion secondary battery, and a lithium ion secondary battery into which the electrode is incorporated. The electrodeposited copper foil exhibits good electrical conductivity and superior tensile strength, with no significant decline in tensile strength exhibited even after one hour of heating at 300° C. The negative electrode has heightened cycle properties due to the use of the electrodeposited copper foil as a current collector. Using x-ray diffraction, in the electrodeposited copper foil, in normal conditions, the diffraction intensity (I) in the orientation, the diffraction intensity (I) in the orientation, and the diffraction intensity (I) in the orientation, satisfy the following formula (1): I /{I +I +I }>0.13 (1).
Abstract:
A method for manufacturing a crimp terminal having a crimp portion that allows crimp connection to a conductor part of a coated wire includes forming a tubular body by bringing together side edges of a plate material made of metal composed of a copper alloy having a copper content ratio of greater than or equal to 70%, irradiating a periphery of the sides edges, which are brought together, with laser light from a laser irradiation unit to weld the side edges which are brought together, and setting a power density of the laser light and a sweep rate of the laser light in such a manner that a weld bead formed at the side edge portion after the welding has a width of 80 μm to 390 μm.
Abstract:
A barrel portion which allows the pressure-bonding connection of an aluminum core wire exposed on a distal end of an insulated wire covered with an insulating cover is formed into a cylindrical shape by bending barrel portion corresponding portions of a terminal base material in a terminal developed state about a terminal axis. In abutting end portions where the barrel portion corresponding portions abut each other, a welded part which welds the end portions is formed along a long length direction of the insulated wire. The welded part is formed on an upper surface concave portion and a projecting portion where an amount of plastic deformation of a conductor pressure-bonding section generated along with the pressure-bonding of the conductor pressure-bonding section becomes larger compared to other portions in a circumferential direction of the conductor pressure-bonding section.
Abstract:
A terminal includes a connector portion electrically connectable to an external terminal, a tubular crimp portion formed integrally or separate from the connector portion and crimps with a wire, and a transition portion coupling the two. The tubular crimp portion of a copper or copper alloy metal base material or a metal member having the same is a tubular member closed on transition portion side and reduces in diameter towards the transition portion side such that a conductor-end portion of the electric wire is un-exposed. The tubular crimp portion has a belt-shaped weld portion along a longitudinal direction of the tubular crimp portion. A circumferential direction of the tubular crimp portion matches the RD-direction of the base material. A sum of area ratios R1, R2 and R3 in a rolling plane of the base material, of Cube-, RDW-, and Goss-oriented crystal grains, respectively, is greater than or equal to 15%.