摘要:
A novel oxide material (MIN-I) comprising YO2; and X2O3, wherein Y is a tetravalent element and X is a trivalent element, wherein X/Y=O or Y/X=30 to 100 is provided. Surprisingly, MIN-I can be reversibly deswollen. MIN-I can further be combined with a polymer to produce a nanocomposite, depolymerized to produce predominantly fully exfoliated layers (MIN-2), and pillared to produce a pillared oxide material (MIN-3), analogous to MCM-36. The materials are useful in a wide range of applications, such as catalysts, thin films, membranes, and coatings.
摘要翻译:包含YO2的新型氧化物材料(MIN-I) 和X 2 O 3,其中Y是四价元素,X是三价元素,其中X / Y = O或Y / X = 30至100。 令人惊讶的是,MIN-I可以可逆地消除。 MIN-I可以进一步与聚合物结合以产生纳米复合材料,解聚以产生主要完全剥离的层(MIN-2),并且被柱形以产生类似于MCM-36的柱状氧化物材料(MIN-3)。 该材料可用于广泛的应用,如催化剂,薄膜,膜和涂料。
摘要:
A curable epoxy resin composition including (a) a thermosettable epoxy resin; and (b) an amphiphilic block copolymer containing at least one epoxy resin miscible block segment and at least one epoxy resin immiscible block segment; wherein the immiscible block segment comprises at least one polyether structure provided that the polyether structure of said immiscible block segment contains at least one or more alkylene oxide monomer units having at least four carbon atoms, such that when the epoxy resin composition is cured, the toughness of the resulting cured epoxy resin composition is increased. The amphiphilic block copolymer is preferably an all polyether block copolymer such as a PEO-PBO diblock copolymer or a PEO-PBO-PEO triblock copolymer.
摘要:
The present invention provides biocompatible vesicles comprising semi-permeable, thin-walled encapsulating membranes which are formed in an aqueous solution, and which comprise one or more synthetic super-amphiphilic molecules. When at least one super-amphiphile molecule is a block copolymer, the resulting synthetic vesicle is termed a “polymersome.” The synthetic, reactive nature of the amphiphilic composition enables extensive, covalent cross-linking of the membrane, while maintaining semi-permeability. Cross-linking of the polymer building-block components provides mechanical control and long-term stability to the vesicle, thereby also providing a means of controlling the encapsulation or release of materials from the vesicle by modifying the composition of the membrane. Thus, the encapsulating membranes of the present invention are particularly suited for the reliable, durable and controlled transport, delivery and storage of materials.
摘要:
This invention relates to a method for hydrogenation of poly(alkenyl aromatic) polymers or poly(alkenyl aromatic)/polydiene block copolymers that provides hydrogenated polymers with 99.5% or greater unsaturation and an MWD of less than about 3. Hydrogenated polymers and adhesives comprising the hydrogenated polymers and tackifier are also provided.
摘要:
Extremely useful compositions for delineation of materials utilized in device applications have been found. These compositions include a polymer having segments that are at least 10 monomer units long of a first entity and segments again at least 10 monomer units long of a second entity. The monomer units are chosen so that each segment type provides a specific chemical characteristic to the polymer.
摘要:
Graft polymers such as grafted polyacetylene and devices based on derivatives of these polymers are produced utilizing a specific process. The process includes the steps of polymerizing a monomer such as acetylene in the presence of a host polymer such as polyisoprene to produce a graft polymer. The use of a host polymer yields several desirable results. For example, when the graft polymerization is performed in the presence of a solvent for an appropriate host polymer, the entire graft polymer is solvated. The solvated graft polymer is then employable to produce films of polymers on a substrate which are in turn useful in structures such as devices.
摘要:
Provided herein are methods of formulating and engineering block copolymer (BCP) systems for directed self-assembly (DSA) processes. In some embodiments, the methods involve engineering a BCP material based on the interaction parameter (χ) of the material and the surface and/or interaction energies of its constituent blocks. Also provided are novel block BCP materials that can be used in DSA techniques. In some embodiments, the BCP systems described herein have micro-phase separating blocks, with at least one block including multiple types of repeat units. Also provided are structures formed by DSA, including structures having a sub-20 nm dimension. Applications included nanolithography for semiconductor devices, fabrication of cell-based assays, nanoprinting, photovoltaic cells, and surface-conduction electron-emitter displays.
摘要:
A composition comprising (1) a thermosettable resin selected from the group consisting of an epoxy resin, an epoxy vinyl ester resin, an unsaturated polyester resin or a mixture thereof, and (2) an amphiphilic mock copolymer dispersed in the thermosettable resin; fiber-reinforced plastics (FRP), coatings and composites prepared therefrom; and methods of preparing these.
摘要:
Chewing gums and chewing gum bases which are cud-forming and chewable at mouth temperature contains a multi-block copolymer having at least two repeating sequences of at least two different polymeric blocks having at least three monomer units each. The multi-block copolymer optionally includes linking units and may be formulated to have non-covalent crosslinking between the copolymer chains. The multi-block copolymer is optionally plasticized with a compatible di-block copolymer to function as an elastomer system in the gum base. Characteristics of the multi-block copolymers can be selected to produce gum bases and chewing gums having desired properties. In some cases, chewed cuds formed from the gum bases may exhibit improved removability from environmental surfaces to which they may become undesirably attached.
摘要:
Methods of directed self-assembly of multi-block (i.e., triblock and higher-order) copolymers on patterned substrates and related compositions are provided. According to various embodiments, the methods involve depositing copolymer materials on substrates configured to drive the assembly of micro-phase separated films that exhibit the same morphology as that copolymer materials in the bulk. In certain embodiments, binary patterns are used to drive the triblock copolymer films. The binary two-dimensional surface patterns are transformed into three-component and three-dimensional structures throughout the thickness of the overlying copolymer films.