Abstract:
Provided is a connector for substantially aseptic connection of tubing, that includes a central tubular stem member with a line connection end and a coupling end having an annular gasket arranged to engage a similar annular gasket on a similar second connector in sealing abutment and a tubular socket member, concentrically arranged outside the stem member, having a flange concentrically arranged outside the coupling end and a cover film releasably bonded to the flange and covering the coupling end of the stem member, the annular gasket and at least a portion of the flange. The socket member is rotatable around the stem member and the connector also has an annular seal member in sealing abutment between an inside of the socket member and an outside of the stem member.
Abstract:
A method for controlling at least one culture parameter in a bioreactor bag (1; 31a, 31b) provided in a bioreactor system, said method comprising the steps of: providing bioreactor information to a control unit (5; 35) controlling the bioreactor system; controlling the at least one culture parameter in dependence of the bioreactor information.
Abstract:
An apparatus for substantially sterile connection of flexible tubing, including at least one tubing holder, which is adapted to receive one or more lengths of flexible tubing and which is also equipped with one or more sterilant applicators. The sterilant applicator is adapted to apply a sterilant to the length of tubing when the tubing length is received in the tubing holder. At least one cutter, which is movable in relation to the tubing holder and adapted to cut the length of tubing. A connector holder, which includes a compartment housing and a substantially sterile tubing connector. The connector holder is movable in relation to the tubing holder to a position where the length of tubing and the sterile tubing connector are aligned and can be urged together.
Abstract:
A disposable container comprising a side wall, top and bottom, wherein the side wall comprises a first flexible material and the bottom comprises a rigid or semi-rigid material. The side wall top and bottom are joined together to define the container with an interior compartment for keeping a fluid inside the container. The bottom comprises at least one opening that is fluid-tightly covered with an assembly comprising a second flexible material. The assembly comprises at least one port which provides access to the interior compartment of the container. The invention also relates to a mixing system comprising the disposable container.
Abstract:
Disclosed is a device for chromatographic separations comprising: a manifold comprising a manifold body defining an elongate central duct, the central duct comprising a centrally-located closable duct valve providing selective fluid communicationGo between a first portion of the central duct and an opposed second portion of the central duct, a first plurality of connectors, each connector of the first plurality of connectors for connecting to a distinct chromatographic separation column and/or feed or extraction tubing or to a connector of an adjacent manifold; a second plurality of connectors, each connector of the second plurality of connectors for connecting to a distinct chromatographic separation column and/or feed or extraction tubing or to a connector of an adjacent manifold; wherein said manifold body further defines: a first plurality of branch ducts, each branch duct of which extending from the first portion of the central duct to an individual one of the first plurality of connectors, each of the branch ducts of the first plurality of branch ducts comprising a closable branch valve providing selectable fluid communication between a respective connector and the first portion of the central duct, a second plurality of branch ducts, each branch duct of which extending from the second portion of the central duct to an individual one of the second plurality of connectors, each of the branch ducts of the second plurality of branch ducts comprising a closable branch valve providing selectable fluid communication between a respective connector and the second portion of the central duct; first and second ports in fluid communication with the centrally-located closable duct valve wherein said first port communicates with said first portion of the central duct and said second port communicates with said second portion of said central duct, wherein one of said first and second ports is further positioned to communicate with said central duct at a location between the centrally-located closable duct valve and the first and second plurality of branch ducts, respectively.
Abstract:
The invention discloses a distribution plate for supplying crossflow filtration cassettes, which comprises a surface, two opposite end walls, two opposite side walls, a feed channel in fluid communication with a feed inlet port and with a plurality of feed apertures; a retentate channel in fluid communication with a retentate outlet port, and with a plurality of retentate apertures; and a permeate channel in fluid communication with two permeate outlet ports and with a plurality of permeate apertures;wherein the feed channel, the retentate channel and the permeate channel extend in a direction essentially parallel with one or both side walls;wherein the feed apertures are grouped at a first area on the surface, the retentate apertures are grouped at a second area on the surface;wherein the permeate apertures are located at the first and/or the second area; andwherein a plurality of permeate connector channels extend inside the plate from at least one region of the permeate channel, adjacent the permeate outlet ports and the permeate connector channels provide fluidic communication between the permeate apertures and the permeate channel.
Abstract:
Methods, systems, and apparatus to monitor component status in a bioprocessing environment are disclosed and described. Certain examples provide a sensor device for a disposable bioprocessing component. The example sensor device includes a first portion affixed to the component, the first portion configured to provide an identifier associated with the component. The example sensor device also includes a second portion configured to provide a status indication based on a state of the component. The example sensor device is configured to transmit the identifier and status indication to a control computer associated with a bioproces sing platform including the component.
Abstract:
The invention relates to a method for providing an aseptic chromatography column, said method comprising the steps of: pre-sterilize an empty chromatography column; pre-sterilize a chromatography medium; introducing the pre-sterilized chromatography medium into the pre-sterilized chromatography column using aseptic equipment, thereby providing an aseptic chromatography column comprising chromatography medium.
Abstract:
The invention discloses embodiments of different high precision pinch control valves having an accuracy in the micron range and a method of controlling a transmembrane pressure (TMP) in a crossflow filtration apparatus, comprising the steps of: a) providing a crossflow filtration apparatus comprising a pump (21) fluidically connected via a retentate compartment (33) of a crossflow filter (32) and a length of flexible tubing to Sa regulator valve (1;101) acting on the flexible tubing, wherein the regulator valve is a high precision pinch valve. The apparatus further comprises a first pressure transducer (22) adapted to measure a pressure between the retentate compartment and the regulator valve, a second pressure transducer (39) adapted to measure a pressure between the pump and the retentate compartment and a third pressure transducer (40) adapted to measure a pressure at a permeate outlet (36) of the crossflow filter, and a control unit (23) electrically or electromagnetically connected to said regulator valve, the first, second and third pressure transducers and optionally to the pump; b) pumping a liquid with the pump via the second pressure transducer, through the retentate compartment via the length of flexible tubing, the first pressure transducer and the regulator valve; c) controlling the regulator valve with the control unit, such that a TMP calculated by formula (I) TMP=(Pinlet+Poutlet/2−Pperm (I)
Abstract:
The invention discloses a flow control block for a stack of chromatography column modules, as well as a stack of chromatography modules comprising at least one flow control block. The flow control block is in a first position or configuration capable of connecting two chromatography column modules, or a chromatography column module and an endpiece, in parallel and in a second position or configuration it is capable of connecting two chromatography column modules, or a chromatography column module and an endpiece, in series.