Abstract:
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of providing a metal alloy powder; forming an initial layer with the metal alloy powder, the initial layer having a preselected thickness and a preselected shape, the preselected shape including at least one aperture; sequentially forming an additional layer over the initial layer with the metal alloy powder, the additional layer having a second preselected thickness and a second preselected shape, the second preselected shape including at least one aperture corresponding to the at least one aperture in the initial layer; and joining the additional layer to the initial layer, forming a structure having a predetermined thickness, a predetermined shape, and at least one aperture having a predetermined profile. The structure is attached to a substrate to make the article.
Abstract:
An article and a process of producing an article are provided. The article includes a base material, a cooling feature arrangement positioned on the base material, the cooling feature arrangement including an additive-structured material, and a cover material. The cooling feature arrangement is between the base material and the cover material. The process of producing the article includes manufacturing a cooling feature arrangement by an additive manufacturing technique, and then positioning the cooling feature arrangement between a base material and a cover material.
Abstract:
A component having a hybrid coating system is provided. The component includes a substrate having a surface and a hybrid coating system including a sheet disposed on the surface and a skin. The sheet includes a plurality of interlocking members. The skin includes a plurality of features corresponding to the interlocking members. The skin is engaged to the sheet in an interlocking manner via the interlocking members and the features. A method for forming a component with a hybrid coating system is also disclosed.
Abstract:
The present application provides a method of repairing a turbine blade. The method may include the steps of removing an existing squealer tip from the turbine blade in whole or in part, positioning the turbine blade in an additive manufacturing system, and building up an extension of a replacement squealer tip on the turbine blade in whole or in part.
Abstract:
The present application provides a method of producing a component. The method may include the steps of creating a dissolvable ceramic material mold in an additive manufacturing process, casting a metallic material in the dissolvable ceramic material mold, creating the component, and dissolving the dissolvable ceramic material. The component may be a turbine component.
Abstract:
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit over the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.
Abstract:
A thermal management article, a method for forming a thermal management article and a thermal management method are disclosed. Forming a thermal management article includes forming a duct adapted to be inserted into a groove on the surface of a substrate, and attaching the duct to the groove so that the top outer surface of the duct is substantially flush with the surface of the substrate. Thermal management of a substrate includes transporting a fluid through the duct of a thermal management article to alter the temperature of the substrate.
Abstract:
A multilayer component and fabrication process are disclosed. The multilayer component includes a foil surface layer abutting the bond coat layer and a channel-forming material positioned between the foil surface layer and a substrate. The channel-forming material defines at least a portion of a channel. The channel can be at least partially defined by a channel-forming material brazed with a foil surface layer to a substrate of the multilayer component. The process includes applying one or more layers to a foil surface layer and applying a channel-forming material to at least partially define a channel between the foil surface layer and a substrate.
Abstract:
A method of fabricating a component includes preparing at least a portion of a surface of the component and forming a pre-sintered preform hybrid hardface mixture comprising combining a predetermined portion of at least one hardfacing material with a predetermined portion of at least one brazing material. The method further includes forming a pre-sintered preform using additive manufacturing, the pre-sintered preform having a near-net shape and forming a sintered preform. The method further includes positioning the sintered preform on the component and fixedly coupling the sintered preform to at least a portion of the component via brazing.
Abstract:
Manufactured articles, and methods of manufacturing enhanced surface smoothed components and articles. More particularly, surface smoothed components and articles, such as combustor components of turbine engines, having surface treatment conferring reduced roughness for enhanced performance and reduced wear related reduction in part life.