Abstract:
An infrared imaging device includes a plurality of electronic components, a phase change material, and a heat transfer structure. The plurality of electronic components is configured to collect data and have a predetermined temperature parameter. The plurality of electronic components is disposed within the phase change material. The phase change material has a first material phase and a second material phase. The phase change material has a first material phase and a second material phase. The phase change material is configured to absorb heat through changing from the first material phase to the second material phase. The heat transfer structure is disposed within the phase change material. The heat transfer structure is configured to conduct heat within the phase change material. The phase change material and the heat transfer structure are further configured to regulate a temperature of the electronic components below the predetermined temperature parameter.
Abstract:
An apparatus for cooling an engine component such as a turbine engine airfoil, including a wall bounding an interior extending axially between a leading edge and a trailing edge and radially between a root and a tip. A cooling circuit it located within the interior of the airfoil can include a flow enhancer permitting a volume of fluid, such as air, to pass around the flow enhancer.
Abstract:
A turbine engine includes a compressor section, a combustor section fluidly coupled to the compressor section, a turbine section fluidly coupled to the combustor section, and a drive shaft coupled to the turbine section and the compressor section. The turbine engine also includes a plurality of internal components coupled to one of the compressor section, the combustor section, the turbine section, and the drive shaft. The turbine engine also includes at least one micro infrared sensor coupled to at least one of the plurality of internal components. The micro infrared sensor is configured to detect a surface temperature of the plurality of internal components.
Abstract:
A temperature measurement system includes a plurality of filaments. The plurality of filaments are configured to emit thermal radiation in a relatively broad and substantially continuous wavelength band at least partially representative of a temperature of the plurality of filaments. A first and second portion of the filaments has a differing first and a second diameter and/or emissivity, respectively. The system also includes a detector array configured to generate electrical signals at least partially representative of the thermal radiation received from the filaments. The system further includes a controller communicatively coupled to the detector array configured to transform the first electrical signals to a first temperature indication at least partially as a function of the first diameter and/or first emissivity and transform the second electrical signals to a second temperature indication at least partially as a function of the second diameter and/or emissivity.
Abstract:
In one embodiment, a cooling system is disclosed. The cooling system comprises: a cooling channel for receiving a cooling media, a substrate disposed near the cooling channel, and a fluidic jet disposed within the substrate and in fluid communication with the cooling channel. The cooling channel is for thermal communication with a component to be cooled. The cooling channel has a height of less than or equal to about 3 mm and a width of less than or equal to 2 mm. The fluidic jet comprises a cavity defined by a well and a membrane. In one embodiment, a method of cooling an electrical component comprises: passing a cooling media through a cooling channel, drawing the cooling media into one or more of the fluidic jets, expelling the cooling media from the one or more fluidic jets into the cooling channel, and removing thermal energy from the electrical component.
Abstract:
An imaging device includes a plurality of electronic components, a phase change material, and a heat transfer structure. The plurality of electronic components is configured to collect data and have a predetermined temperature parameter. The plurality of electronic components is disposed within the phase change material. The phase change material has a first material phase and a second material phase. The phase change material has a first material phase and a second material phase. The phase change material is configured to absorb heat through changing from the first material phase to the second material phase. The heat transfer structure is disposed within the phase change material. The heat transfer structure is configured to conduct heat within the phase change material. The phase change material and the heat transfer structure are further configured to regulate a temperature of the electronic components below the predetermined temperature parameter.
Abstract:
An infrared imaging device includes a plurality of electronic components, a phase change material, and a heat transfer structure. The plurality of electronic components is configured to collect data and have a predetermined temperature parameter. The plurality of electronic components is disposed within the phase change material. The phase change material has a first material phase and a second material phase. The phase change material has a first material phase and a second material phase. The phase change material is configured to absorb heat through changing from the first material phase to the second material phase. The heat transfer structure is disposed within the phase change material. The heat transfer structure is configured to conduct heat within the phase change material. The phase change material and the heat transfer structure are further configured to regulate a temperature of the electronic components below the predetermined temperature parameter.
Abstract:
A turbine engine includes a compressor section, a combustor section fluidly coupled to the compressor section, a turbine section fluidly coupled to the combustor section, and a drive shaft coupled to the turbine section and the compressor section. The turbine engine also includes a plurality of internal components coupled to one of the compressor section, the combustor section, the turbine section, and the drive shaft. The turbine engine also includes at least one micro infrared sensor coupled to at least one of the plurality of internal components. The micro infrared sensor is configured to detect a surface temperature of the plurality of internal components.
Abstract:
A synthetic jet assembly includes a synthetic jet having a cavity and an opening formed therein. The synthetic jet assembly also includes an actuator element coupled to a second surface of the body to selectively cause displacement of the second surface, and a control unit electrically coupled to the actuator element. The control unit is configured to transmit a multi-frequency drive signal to the actuator element, the multi-frequency drive signal comprising a cooling frequency component and an acoustic frequency component superimposed on the cooling frequency component. The cooling frequency component causes a cooling jet to eject from the opening of the body. The acoustic frequency component produces a desired audible output.
Abstract:
A combination power plant and intensified farm includes a power plant and an intensified farm. The power plant generates electricity and an exhaust stream. An exhaust cleanup facility captures CO2 from the exhaust stream. The intensified farm receives at least a portion of CO2 from the exhaust cleanup facility to assist in the raising of at least one crop. If necessary, the intensified farm receives at least a portion of electricity from the power plant. In another embodiment, the exhaust cleanup facility also provides H2O to the intensified farm. In another embodiment, a NOx to fertilizer conversion facility converts NOx from the exhaust cleanup facility to a fertilizer and provides the fertilizer to the intensified farm. In another embodiment, a gasifier or digester receives an inedible biomass from the intensified farm and converts the inedible biomass to a fuel, which is to the power plant.