OPTICAL DEVICE WITH LOW-LOSS THERMALLY TUNABLE CLOSED-CURVE OPTICAL WAVEGUIDE

    公开(公告)号:US20230073958A1

    公开(公告)日:2023-03-09

    申请号:US18055576

    申请日:2022-11-15

    Abstract: Disclosed is a photonic structure and associated method. The structure includes a closed-curve waveguide having a first height, as measured from the top surface of an insulator layer, and an outer curved sidewall that extends essentially vertically the full first height (e.g., to minimize signal loss). The structure includes a closed-curve thermal coupler and a heating element. The closed-curve thermal coupler is thermally coupled to and laterally surrounded by the closed-curve waveguide and has a second height that is less than the first height. In some embodiments, the closed-curve waveguide and the closed-curve thermal coupler are continuous portions of the same semiconductor layer having different thicknesses. The heating element is thermally coupled to the closed-curve thermal coupler and thereby indirectly thermally coupled to the closed-curve waveguide. Thus, the heating element is usable for thermally tuning the closed-curve waveguide via the closed-curve thermal coupler to minimize any temperature-dependent resonance shift (TDRS).

    OPTICAL POWER MODULATORS WITH UNLOADED TRANSMISSION LINES

    公开(公告)号:US20220252910A1

    公开(公告)日:2022-08-11

    申请号:US17170237

    申请日:2021-02-08

    Abstract: Structures for an optical power modulator and methods of fabricating a structure for an optical power modulator. A first waveguide core includes first and second sections. A second waveguide core includes a first section laterally adjacent to the first section of the first waveguide core and a second section laterally adjacent to the second section of the first waveguide core. An interconnect structure is formed over the first waveguide core and the second waveguide core. The interconnect structure includes first and second transmission lines. The first transmission line is physically connected within the interconnect structure to the first section of the first waveguide core. The second transmission line includes a first section physically connected within the interconnect structure to the second section of the first waveguide core and a second section adjacent to the first transmission line.

    OPTICAL RING MODULATOR WITH PHOTONIC CRYSTAL

    公开(公告)号:US20220187676A1

    公开(公告)日:2022-06-16

    申请号:US17119042

    申请日:2020-12-11

    Abstract: Embodiments of the disclosure provide an optical ring modulator. The optical ring modulator includes waveguide with a first semiconductor material of a first doping type, and a second semiconductor material having a second doping type adjacent the first semiconductor material. A P-N junction is between the first semiconductor material and the second semiconductor material. A plurality of photonic crystal layers, each embedded within the first semiconductor material or the second semiconductor material, has an upper surface that is substantially coplanar with an upper surface of the waveguide structure.

    Photonic devices integrated with reflectors

    公开(公告)号:US11243350B2

    公开(公告)日:2022-02-08

    申请号:US16817582

    申请日:2020-03-12

    Abstract: The present disclosure generally relates to semiconductor devices for use in optoelectronic/photonic applications and integrated circuit (IC) chips. More particularly, the present disclosure relates to semiconductor devices having a reflector and a photonic component and a method of forming the same. The present disclosure provides a semiconductor device having a substrate, a photonic component arranged above the substrate, a bottom reflector arranged above the substrate and positioned below the photonic component, in which the bottom reflector has a plurality of grating structures configured to reflect electromagnetic waves towards the photonic component, and a top reflector arranged above the photonic component, in which the top reflector has a plurality of grating structures configured to reflect electromagnetic waves towards the photonic component.

    Thermal stabilization circuit for an optical ring resonator

    公开(公告)号:US12222589B2

    公开(公告)日:2025-02-11

    申请号:US17729031

    申请日:2022-04-26

    Abstract: Disclosed is a thermal stabilization circuit including a heater, which is adjacent and thermally coupled to a closed-curve waveguide of an optical ring resonator, and an analog feedback circuit, which includes a fully autonomous analog feedback loop from a drop port of a bus waveguide of the optical ring resonator to the heater. This analog feedback circuit is configured to dynamically control the electrical power provided to the heater and, thereby to dynamically control the thermal output of the heater in order to tune the ring resonance wavelength to the operating laser wavelength. The analog feedback circuit is further configured to be independent of input power, to be power efficient, to have a relatively small footprint, to have a tunable time constant and to facilitate adjustable wavelength locking. Also disclosed is a device (e.g., a ring-based transceiver or the like), which includes multiple optical ring resonators and corresponding thermal stabilization circuits.

    Optical device with low-loss thermally tunable closed-curve optical waveguide

    公开(公告)号:US11803012B2

    公开(公告)日:2023-10-31

    申请号:US18055576

    申请日:2022-11-15

    Abstract: Disclosed is a photonic structure and associated method. The structure includes a closed-curve waveguide having a first height, as measured from the top surface of an insulator layer, and an outer curved sidewall that extends essentially vertically the full first height (e.g., to minimize signal loss). The structure includes a closed-curve thermal coupler and a heating element. The closed-curve thermal coupler is thermally coupled to and laterally surrounded by the closed-curve waveguide and has a second height that is less than the first height. In some embodiments, the closed-curve waveguide and the closed-curve thermal coupler are continuous portions of the same semiconductor layer having different thicknesses. The heating element is thermally coupled to the closed-curve thermal coupler and thereby indirectly thermally coupled to the closed-curve waveguide. Thus, the heating element is usable for thermally tuning the closed-curve waveguide via the closed-curve thermal coupler to minimize any temperature-dependent resonance shift (TDRS).

Patent Agency Ranking